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BAYESIAN ANALYSIS OF THE ADDITIVE MIXED MODEL FOR RANDOMIZED
BLOCK DESIGNS

JENTING WANG1 AND JOHN S.J. HSU2∗

State University of New York and University of California

Summary

This paper deals with the Bayesian analysis of the additive mixed model experiments.
Consider b randomly chosen subjects who respond once to each of t treatments. The subjects
are treated as random effects and the treatment effects are fixed. Suppose that some prior
information is available, thus motivating a Bayesian analysis. The Bayesian computation,
however, can be difficult in this situation, especially when a large number of treatments is
involved. Three computational methods are suggested to perform the analysis. The exact
posterior density of any parameter of interest can be simulated based on random realizations
taken from a restricted multivariate t distribution. The density can also be simulated using
Markov chain Monte Carlo methods. The simulated density is accurate when a large number
of random realizations is taken. However, it may take substantial amount of computer time
when many treatments are involved. An alternative Laplacian approximation is discussed. The
Laplacian method produces smooth and very accurate approximates to posterior densities,
and takes only seconds of computer time. An example of a pipeline cracks experiment is
used to illustrate the Bayesian approaches and the computational methods.

Key words: Laplacian approximation; Monte Carlo simulation.

1. Introduction

Suppose we have t treatments that are to be compared and b blocks. The randomized
complete block design is used to control and reduce experimental error. Following Box & Tiao
(1973), we consider the additive mixed model, with one observation per cell. The response
of the unit with the ith treatment in the jth block is

yij = θi + bj + εij i = 1, 2, . . . , t ; j = 1, 2, . . . , b, (1)

where θ i is the mean of the ith treatment, bj is the effect of the jth block, and εij is the
experimental error. The experimental errors are assumed independent and normally distributed
with zero means and common variance σ 2

e . We further assume that the block effects are
independent and normally distributed with zero means and common variance σ 2

b, and are
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independent of experimental errors. Define the sums of squares SSB = t
∑b

j=1(ȳ.j − ȳ..)2

and SSE = ∑t
i=1

∑b
j=1(yij − ȳi. − ȳ.j + ȳ..)2, where ȳi., ȳ.j and ȳ.. represent sample means

for the ith treatment, for the jth block, and for all observations, respectively. The likelihood
function of θ = (θ 1, θ 2, . . . , θ t )�, σ 2

e , and σ 2
be = σ 2

e + tσ 2
b > σ 2

e given the data y =
(y11, y12, . . . , ytb )� is

L
(
θ , σ 2

be, σ
2
e

∣∣y) ∝ (
σ 2

be

)−b/2(
σ 2

e

)−b(t−1)/2
exp

(
− 1

2

(
SSB

σ 2
be

+ SSE
σ 2

e

+ (ȳt − θ )�V−1(ȳt − θ)

))
, for σ 2

be > σ 2
e (2)

where ȳt = (ȳ1., ȳ2., . . . , ȳt.) and V = b−1(σ 2
e I + σ 2

b 1 1�) with I denoting the identity matrix
and 1 denoting the unit vector.

Let θ̄ = 1
t
(θ1 + θ2 + · · · + θt ) represent the overall mean, and τi = θi − θ̄ represent the

ith treatment effect, for i = 1, 2, . . . , t . Note that we may express the t th treatment effect
τ t by τt = −∑t−1

i=1 τi . We reparametrize model (1) and rearrange the last term in (2). The
likelihood function of θ̄ , τ = (τ1, τ2, . . . , τt−1), σ 2

be, and σ 2
e is

L
(
θ̄ , τ , σ 2

be, σ
2
e

∣∣y) ∝ (
σ 2

be

)−b/2
exp

(
− 1

2σ 2
be

(
SSB + tb(θ̄ − ȳ..)

2
))

× (
σ 2

e

)−b(t−1)/2
exp

(
− 1

2σ 2
e

(
SSE + (τ − τ̂ )�D−1(τ − τ̂ )

))
, (3)

for θ̄ ∈ R, τ ∈ R
t−1, and σ 2

be > σ 2
e > 0, where D = b−1(I − t−111�), τ̂ = (τ̂1, τ̂2, . . . , τ̂t−1),

and τ̂i = ȳi. − ȳ.., for i = 1, 2, . . . , t − 1. Note that the above likelihood function consists of
two components: one for (θ̄ , σ 2

be) and the other for (τ , σ 2
e).

Suppose that some prior information about the experiment is available. In this case, a
Bayesian analysis is desirable. The prior distributions may be assigned subjectively or obtained
from previously performed experiments. For example, suppose that similar experiments have
been performed in the past. Summary statistics such as treatment means ȳt , and sums of
squares SSB and SSE can be calculated for each experiment. Those quantities may be
used to formulate the prior distributions for the overall mean θ̄ , treatment effects τ , and
variance components σ 2

e and σ 2
be. The Bayesian analysis is more informative in general.

The computation, however, is sometimes not easy. The posterior distribution of θ̄ , τ , σ 2
be, σ

2
e

given the data y is a (t + 2)-dimensional distribution. The posterior distribution of any
parameter of interest, η = g(θ̄ , τ , σbe, σe), will require a (t + 2)-dimensional integration. The
distribution cannot be obtained analytically and numerical methods such as the Monte Carlo
methods (model sampling, Rubinstein, 1981; Gibbs sampling, Gelfand & Smith, 1990) and
approximations (Laplacian approximations, Leonard et al., 1989) are needed to overcome
the difficulties in computation. The detailed prior structure and the computational methods
are discussed in Section 2. In Section 3, a numerical example will be discussed to illustrate the
model as well as the computational methods. A detailed Bayesian analysis for the experiment
will also be discussed.
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2. Bayesian Analysis

We consider a conjugate prior for θ̄ , τ , σ 2
be, and σ 2

e . The prior can be specified in the
following three stages.

(i) Stage 1: Given σ 2
be, with specified parameters µθ̄ and c, the overall mean θ̄ possesses

a normal distribution with mean µθ̄ and variance cσ 2
be. Given also σ 2

e , with specified
vector µ, and matrix C, the vector of (t − 1) treatment effects τ follows a multivariate
normal distribution, with a mean µ, and a covariance matrix σ 2

e C.
(ii) Stage 2: Given σ 2

e , with specified parameters ν1 and λ1, the quantity ν1λ1/σ
2
be follows

a truncated chi-squared distribution with ν1 degrees of freedom, with the density

π
(
σ 2

be

∣∣σ 2
e

) ∝




(
σ 2

be

)− ν1
2 −1

exp

(
−ν1λ1

2σ 2
be

)
for σ 2

be > σ 2
e

0 otherwise.

(iii) Stage 3: With specified parameters ν2 and λ2, the quantity ν2λ2/σ
2
e possesses a chi-

squared distribution with ν2 degrees of freedom. That is,

π
(
σ 2

e

) ∝



(
σ 2

e

)− ν2
2 −1

exp

(
−ν2λ2

2σ 2
e

)
for σ 2

e > 0

0 otherwise.

It is well known that the conjugate priors are very easy to work with because the
posterior and prior have the same distributional form and the effect of the data is just to
update the parameters from the prior to the posterior. Therefore, the resulting posterior
distribution of θ̄ , τ , σ 2

be and σ 2
e has the same form as the prior but with prior parameters

µθ̄ , c,µ, C, ν1, λ1, ν2 and λ2 replaced by µ∗̄
θ
, c∗,µ∗, C∗, ν∗

1 , λ∗
1, ν

∗
2 and λ∗

2 where µ∗̄
θ

=
θ̄∗ = (c−1 + tb)−1(c−1µθ̄ + tbȳ..), c∗−1 = c−1 + tb,µ∗ = τ ∗ = (D−1 + C−1)−1(D−1τ̂ +
C−1µ), C∗−1 = C−1 + D−1, ν∗

1 = ν1 + b, ν∗
1 λ∗

1 = ν1λ1 + SSB + (c + t−1b−1)−1(µθ̄ −
ȳ..)2, ν∗

2 = ν2 + b(t − 1) and ν∗
2λ∗

2 = ν2λ2 + SSE + (τ̂ − µ)�H(τ̂ − µ), with H =
D−1(D−1 + C−1)−1 C−1. Such updating procedures, in general, have been widely discussed
in the Bayesian literature. For details see, for example, Berger (1985), Gelman et al. (1995),
Leonard & Hsu (1999) and Congdon (2003).

The prior parameters µθ̄ , c,µ, C, ν1, λ1, ν2 and λ2 may be specified subjectively ac-
cording to researchers’ prior knowledge. They may also be specified based on previously
performed experiments. Alternatively, vague, improper, or objective priors might be used.
For example, to determine the prior parameters we may first consider uniform priors for
θ̄ , τ , log σ 2

be and log σ 2
e , where σ 2

be > σ 2
e . The resulting posteriors are:

(i) Given σ 2
be, the posterior of θ̄ follows a normal distribution with mean ȳ.. and variance

σ 2
be/tb. Given σ 2

e , the posterior of τ follows a normal distribution with mean vector τ̂

and covariance matrix σ 2
e D.

(ii) Given σ 2
e , the posterior of SSB/σ 2

be follows a truncated chi-squared distribution with
b − 1 degrees of freedom, where σ 2

be > σ 2
e .

(iii) The posterior of SSE/σ 2
e follows a chi-squared distribution with b(t − 1) − 1 degrees

of freedom.

This should be the choice of prior if ȳ.., τ̂ ,SSB and SSE are replaced by ȳ∗
.. , τ̂

∗, SSB∗

and SSE∗, where ȳ∗
.. , τ̂

∗, SSB∗ and SSE∗ are summary statistics based upon previous
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228 JENTING WANG AND JOHN S.J. HSU

experiments. Therefore, prior parameters µθ̄ , c,µ, C, ν1, λ1, ν2 and λ2 can be determined
accordingly.

The primary goal for the experiment is to compare treatments. The following parameters
may be considered for the analysis.

(i) The parameter of interest is a linear contrast of θ 1, θ 2, . . . , θ t . That is, η = ∑t
i=1 aiθi =∑t

i=1 aiτi , where
∑t

i=1 ai = 0. Such parameters include the difference between two
groups of treatments. For example, η = θ i − θ j represents the difference between
treatments i and j . We might be interested in the probability P (θ i > θ j ) = P (τ i >

τ j ) = P (η > 0). Such probability can be obtained by using Monte Carlo simulations
from the posterior distribution of τ given y or by performing a simple one-dimensional
numerical integration of the approximated posterior density of η given y over the range η

> 0. The Monte Carlo simulations and the approximations to the posterior densities for
the parameters of interest will be discussed later in the section.

(ii) The parameter of interest is a quadratic function of θ 1, θ 2, . . . , θ t . For example, η =∑t
i=1(θi − θ̄ )2 = ∑t

i=1 τ 2
i . The concentration of the density of η in the neighborhood of

zero indicates that the treatment means are similar.

In order to perform a detailed analysis, it is desirable to calculate the posterior density of
the parameter of interest. To derive the density, we first consider the posterior density without
the constraint C: σ 2

be > σ 2
e , and denote the posterior densities and posterior probabilities by

π∗ and P∗, when the constraint C is ignored. Ignoring the constraint C, the posterior density
of τ , given y, can be obtained by integrating θ̄ , σ 2

be and σ 2
e out from the joint posterior density.

The resulting posterior density π∗(τ | y) is the (t − 1)-dimensional multivariate t distribution,
with ν degrees of freedom, location vector τ ∗ and scale matrix T, denoted by t t−1(ν, τ ∗, T),
and has the form

π∗(τ | y) ∝
(

1 + 1

ν
(τ − τ ∗)�T(τ − τ ∗)

)−[ν2+b(t−1)+1]/2

, (4)

where ν = ν2 + (t − 1)(b − 1) + 1 and

T = ν

ν2λ2 + SSE + (τ̂ − µ)�H(τ̂ − µ)
(D−1 + C−1).

Note that the actual posterior density of τ , given y, is not π∗(τ | y), the multivariate t density
described in (4). We denote that the actual posterior density of τ given y, is the one with the
constraint C: σ 2

be > σ 2
e , by π (τ | y) = π∗(τ |C, y). Note the equality

π∗(τ | C, y) × P ∗(C | y) = P ∗(C | τ , y) × π∗(τ | y),

and the term P ∗(C | y) is constant in τ . Therefore, the desired posterior density π (τ | y) =
π∗(τ | C, y) can be represented as

π (τ | y) ∝ π∗(τ | y) × P ∗(C | τ , y). (5)

To calculate P ∗(C | τ , y) = P ∗(σ 2
be > σ 2

e | τ , y), we need to study the conditional distributions
of σ 2

be and σ 2
e , given τ and y. Ignoring the constraint C, the quantities σ 2

be and σ 2
e are

independent, and the quantity Ube follows a chi-squared distribution with degrees of freedom
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νbe = ν1 + b + 1, where

Ube = 1

σ 2
be

(
ν1λ1 + SSB + (c + t−1b−1)−1(µθ − ȳ..)

2
)
.

Furthermore, given τ , the quantity Ue follows a chi-squared distribution with νe = ν2 +
b (t − 1) + 1 degrees of freedom, where

Ue = 1

σ 2
e

(
ν2λ2 + SSE + (τ̂ − µ)�H(τ̂ − µ) + (τ − τ ∗)�(D−1 + C−1)(τ − τ ∗)

)
. (6)

Therefore, given τ , the quantity

F = Ube/νbe

Ue/νe

= K(τ )
σ 2

e

σ 2
be

follows an F distribution with νbe and νe degrees of freedom, where K(τ ) is a function of τ

and is defined as

K(τ ) =
(
ν1λ1 + SSB + (c + t−1b−1)−1(µθ − ȳ..)2

)
/νbe(

ν2λ2 + SSE + (τ̂ − µ)�H(τ̂ − µ) + (τ − τ ∗)�(D−1 + C−1)(τ − τ ∗)
)
/νe

.

Following (5), the actual posterior density of τ given y is

π (τ | y) ∝ π∗(τ | y) × P ∗(σ 2
e < σ 2

be

∣∣τ , y
)
,

where π∗(τ | y) is the multivariate t density defined in (4), and the probability P ∗(σ 2
e <

σ 2
be | τ , y) can be calculated via an F distribution. That is,

P ∗(σ 2
e < σ 2

be

∣∣τ , y
) = P ∗

(
σ 2

e

σ 2
be

< 1 | τ , y
)

= P
(
Fνbe,νe

< K(τ )|τ , y
)
,

where the variable F νbe,νe
denotes an F random variable with νbe and νe degrees of freedom.

Therefore, the posterior density of τ , given y, is proportional to the product of a multivariate t

density and the cumulative distribution function of an F random variable, evaluated at K(τ ).
That is,

π (τ | y) ∝
(

1 + 1

ν
(τ − τ ∗)�T(τ − τ ∗)

)−[ν2+b(t−1)+1]/2

× P
(
Fνbe,νe

< K(τ )
∣∣τ , y

)
. (7)

The posterior densities of the parameters of interest, such as the linear contrasts and
quadratic functions of τ cannot be written in analytic forms. Therefore, approximations or
simulation methods are needed to calculate the desired density. Three calculation methods are
discussed below: (i) direct simulations; (ii) Markov chain Monte Carlo (MCMC) simulations;
and (iii) Laplacian approximations.

(i) Direct simulations according to the posterior distribution of τ in equation (7). To
simulate the parameter of interest η = g(τ ), we first simulate a τ from the multivariate
t-distribution with ν degrees of freedom, mean vector τ ∗ and precision matrix T, then
keep the simulated τ with probability P (F νbe,νe

< K(τ ) | τ , y). The quantity η is then
calculated according to the function η = g(τ ).
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(ii) Markov chain Monte Carlo simulations. Markov chain Monte Carlo (Metropolis et al.,
1953; Hastings, 1970; Geman & Geman, 1984; Besag & Higdon, 1999; Gelfand &
Smith, 1990; Geyer, 1992; Brooks, 1998; Gelman et al., 1995) has been widely used
in Bayesian computations. The Gibbs sampler (Gelfand & Smith, 1990) is a particular
MCMC method and can be used here to simulate τ and hence η = g(τ ). The Gibbs
sampler requires that it is possible to simulate directly from each conditional distri-
bution of the parameter given all the remaining parameters. Following the posterior
distributions of θ̄ , τ , σ 2

be and σ 2
e , the conditional distributions are reported as follows:

(D1) Given τ , σ 2
be, and σ 2

e , the posterior of θ̄ follows a normal distribution with mean θ̄∗

and variance (c−1 + tb)−1 σ 2
be.

(D2) Given θ̄ , σ 2
be, σ

2
e , the posterior of τ is a multivariate normal with mean vector τ ∗ and

covariance matrix (D−1 + C−1)−1 σ 2
e .

(D3) Given θ̄ , τ and σ 2
e , the quantity

Wbe = ν1λ1 + SSB + (c + t−1b−1)−1(µθ − ȳ..)2 + (c−1 + tb)(θ̄ − θ∗)2

σ 2
be

follows a truncated chi-squared distribution with ν1 + b + 1 degrees of freedom, where
σ 2

be > σ 2
e .

(D4) Given θ̄ , τ , and σ 2
be, the quantity Ue, defined in (6), follows a truncated chi-squared

distribution with ν2 + b(t − 1) + 1 degrees of freedom, where σ 2
e < σ 2

be.
The quantities θ̄ , τ , σ 2

be and σ 2
e can be successively simulated according to the condi-

tional distributions in (D1) – (D4). Hence, the parameter of interest η = g(τ ) can be
calculated accordingly.

(iii) The Laplacian approximations for calculating marginal densities have been used suc-
cessfully in many applications. See for example, Leonard (1982), Leonard, Hsu &
Tsui (1989), Tierney, Kass & Kadane (1989), Hsu (1995) and Leonard & Hsu (1999),
for details. Let η = g(τ ) be the parameter of interest. The quantity τ η conditionally
maximizes π (τ | y) given that η = g(τ ). Let �η and Rη be defined as

�η = ∂ log π (τ | y)

∂τ
|τ=τ η

and

Rη = −∂2 log π (τ | y)

∂ττ� |τ=τ η
.

Note that the matrix Rη is the posterior information matrix of π (τ | y) evaluated at
τ = τ η. Following Leonard, Hsu & Tsui (1989), the posterior density of π (η | y) can
be approximated by

π̄ (η | y) ∝ π (τ η | y)|Rη|− 1
2 exp

(
1

2
��

η R−1
η �η

)
f (η | τ ∗

η, R−1
η ), (8)

where τ ∗
η = τ η +R−1

η �η, and the function f (η | τ ∗
η, R−1

η ) denotes the density of η =
g (τ ) when τ possesses a multivariate normal distribution with mean vector τ ∗

η and
covariance matrix R−1

η . Note that when g is a linear function in τ , f is a normal density.
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When g is a non-linear function of τ , we will need to replace f by an appropriate
approximation f ∗, and the accuracy of π̄ (η | y) will depend on the precision of the
approximated density f ∗. For example, when g is a quadratic function in τ , the density
f is well approximated by a Gamma density f ∗ by matching the first two moments. It
has been reported in many numerical examples with many different functions g(τ ), by
Leonard, Hsu & Tsui (1989), Hsu, Leonard & Tsui (1991) and Leonard & Hsu (1999)
that the approximation (8) possesses excellent numerical accuracy when compared
with the exact result. Other approximations such as Edgeworth expansions (Johnson &
Ladalla, 1979; Zellner & Rossi, 1984), and variational methods (Jordan et al., 1999;
Jaakkola & Jordan, 2000; Beal & Ghahramani, 2003) can also be considered.

Other Bayesian approaches to ANOVA may also be considered for the analysis. In
estimating variance components, the maximum likelihood (ML) estimation takes no account
of the degrees of freedom that are involved in estimating fixed effects. Thus, the resulting ML
estimators are biased. This feature is overcome by restricted maximum likelihood (REML)
estimation which estimates variance components based on residuals calculated after fitting just
the fixed effects part of the model. See for example, Thompson (1962) and Harville (1977). Our
method improves upon REML by expressing uncertainty regarding the variance components.
Besag & Higdon (1993, 1999) and Besag et al. (1995) discussed Bayesian approaches for
analysing agricultural field experiments. They proposed complex formulations for situations
when spatial effects were considered, while our approach is for the standard additive mixed
model. An advantage of our approach, when compared with other Bayesian approaches, is that
we are easily able to access the marginals of complex functions of the first stage parameters.

3. An Example

Construction of a land pipeline for transporting domestic waste water from a pri-
mary treatment plant was completed by the Perth Metropolitan Water Authority (Western
Australia) in the 1980s. Tests for cracking of the cement mortar lining of the pipeline were
performed during the course of construction to determine if autogenous healing would seal the
cracks for, if not, costly repairs using epoxy would be necessary. After cracks were observed,
the pipeline was kept filled with water for 14 weeks, and Cox & Kelsall (1986) reported that
periodic measurements (in millimetres) of crack widths were taken at 12 randomly chosen
crack locations initially before filling the pipeline, and then after the 2nd, 6th, and 14th
weeks during the wet period. Those measurements are reproduced in Table 1 and displayed in
Figure 1 for the purpose of illustration. The intervals, 0, 2, 6 and 14 weeks, represent the four
treatments of the experiment, and the corresponding treatment means are denoted by θ 1, θ 2,
θ 3 and θ 4 respectively. The primary interest of this experiment is to learn whether the four
predetermined times of measuring after the initial cracks appeared affected the crack widths.

Sincich (1995) suggested the additive mixed model (1) for analysis, with the four pre-
determined treatments as fixed effects and the twelve crack locations as random blocks. The
analysis of variance is summarized in Table 2. The treatment F ratio has a p-value of nearly
zero indicating significant different treatment means. The block F ratio has a p-value of
0.1255, which indicates that the location faction is not very significant. Furthermore, the
interaction between time periods and location does not seem to be significant. Although
this cannot be tested in this case because of the lack of degrees of freedom, it can be seen
from the scatter plot of crack width against wet period in Figure 1 that the interaction is not

C© 2006 Australian Statistical Publishing Association Inc.
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TABLE 1
The Pipeline Cracks Data

Crack width (in millimetres) after being wet for
Crack
location 0 weeks 2 weeks 6 weeks 14 weeks

1 0.50 0.20 0.10 0.10
2 0.40 0.20 0.10 0.10
3 0.60 0.30 0.15 0.10
4 0.80 0.40 0.10 0.10
5 0.80 0.30 0.05 0.05
6 1.00 0.40 0.05 0.05
7 0.90 0.25 0.05 0.05
8 1.00 0.30 0.05 0.10
9 0.70 0.25 0.10 0.10
10 0.60 0.25 0.10 0.05
11 0.30 0.15 0.10 0.05
12 0.30 0.14 0.05 0.05

Figure 1. Scatter plot for the pipeline cracks data.

significant because similar curve patterns are presented for different locations over four mea-
suring times. For the Bayesian analysis, we consider the three-stage conjugate prior, discussed
in Section 2, with vague prior information about the overall mean and the treatment effects,
by letting c → ∞ and |C| → ∞. Furthermore, we choose prior parameters λ1 = ν1 = λ2

= ν2 = 1, as an example for illustration. The procedure remains the same for any other
prior parameters supplied. We study whether the measuring time affected the crack widths
by evaluating η = ∑4

i=1 τ 2
i = ∑4

i=1(θi − θ̄)2. The idea is that if the measuring time does not
affect the crack widths then the treatment means θ 1, θ 2, θ 3 and θ 4 are all identical, hence
η = 0. The posterior distributions of η are presented in Figure 2. Curve (a) in the figure is
the simulated exact histogram of η, which was simulated from the exact posterior density
π (τ | y) of τ given y in (7). The MCMC approach produced a similar histogram to (a). Curve
(b) in the figure represents the approximate posterior density of η which is obtained using the
Laplacian approximation (8). Curve (b) agrees very well with the histogram and shows the
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TABLE 2
Analysis of variance of the pipeline cracks data

Source of Sum of Degrees of Mean
variation squares freedom square F 0 p-value

Treatments 2.685 3 0.895 58.117 <0.0001
Blocks 0.277 11 0.025 1.667 0.1255
Error 0.509 33 0.015
Total 3.471 47

y tisn ed ro ir etso
P

0.0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

η

(a)
(b)
(c)

Figure 2. Marginal posterior density of η = ∑4
i=1(θi − θ̄ )2 for the pipeline cracks data. (a) Histogram,

based on 100 000 simulations from exact posterior density with vague prior; (b) Laplacian Approxima-
tion with vague prior; (c) Laplacian Approximation with µ = 0 and C = D.

accuracy of the approximation (8). The posterior density curve is centered about 0.22 and is
visible within the range (0.05, 0.50). The curve being focused away from 0 suggests that the
four treatments have significantly different effects. This conclusion of significant differences
between treatments with the vague prior information, coincides with the standard ANOVA
approach. With a more informative prior, however, the results might be quite different. For
example, suppose that the researchers believe that the four measuring times do not affect
the crack widths. Curve (c) represents the approximate posterior density of η when the prior
parameters are µ = 0 and C = D instead. Those parameters may be obtained according to
researchers’ knowledge or by using the Bayesian’s updating procedure discussed in Section 2,
based on summary information from previous experiments. Curve (c) is much more peaked,
centered about 0.045, and ranged between 0.0 and 0.2. The curve is shifted towards 0 com-
pared with curve (b) using a vague prior. It is not obvious if the conclusion of indifference
between the treatments can be drawn from curve (c).

The primary interest for the experiment is to determine whether the four measuring times
affected the crack widths. Supposing that the vague prior is used, we have now concluded
that the four predetermined times of measuring after the initial cracks affected the crack
widths. It may be of interest to investigate further the structure of the differences. We can
study the linear, quadratic and cubic relationships between the changes in size of the cracks

C© 2006 Australian Statistical Publishing Association Inc.
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TABLE 3
Table of orthogonal polynomial coefficients

Normalized coefficients for
Wet period
(weeks) Linear contrast Quadratic contrast Cubic contrast

0 −0.5129 0.5296 −0.4544
2 −0.3264 −0.1059 0.7952
6 0.0466 −0.7680 −0.3976
12 0.7926 0.3443 0.0568
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Figure 3. Marginal posterior densities of linear, quadratic and cubic contrasts for the pipeline cracks
data. (a) Linear contrast; (b) Quadratic contrast; (c) Cubic contrast.

over time by constructing orthogonal contrasts in the treatment effects τ 1, τ 2, τ 3 and τ 4.
The four predetermined times of measuring were not equally spaced, so the standard tables
for constructing orthogonal contrasts are not applicable. However, the contrasts can still be
constructed (see for example Wishart & Metakides, 1953 and Robson, 1959). Following the
procedure provided by Robson (1959) the normalized coefficients for the orthogonal contrasts
are constructed and reported in Table 3.

The normalized linear contrast

L = −0.5129τ1 − 0.3264τ2 + 0.0466τ3 + 0.7926τ4

represents a measure of linear trend of the measuring time. The case L = 0 represents no
linear trend, and the linear trend is significant while L is away from zero. Curve (a) in Figure 3
represents the posterior density of L. Curve (a) is centered about −0.36 and is visible within
the range (−0.60, −0.10). The posterior probability P (L > 0) ≈ 0 indicates that the linear
trend is strong. Similarly, the normalized quadratic and cubic contrasts

Q = 0.5296τ1 − 0.1059τ2 − 0.7680τ3 + 0.3443τ4 and

C = −0.4544τ1 + 0.7952τ2 − 0.3976τ3 + 0.0568τ4
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represent measures of quadratic and cubic trends of the measuring times, respectively. Curves
(b) and (c) in Figure 3 represent the posterior densities for Q and C, respectively. Curve (b) is
centered about 0.28 and is visible within the range (0.05, 0.50) and curve (c) is centered about
−0.12 and is visible within range (−0.40, 0.18). The posterior probabilities P (Q > 0) ≈ 1
and P (C > 0) = 0.0320 indicate that the quadratic trend is strong but not as much as the
linear trend, and the cubic trend is insubstantial. The arguments here coincide with the scatter
plot in Figure 1: while the linear and quadratic trends are strong, the cubic trend is not. In
conclusion, the crack sizes do differ depending on the time of measuring. The shrinkage in
the cracks varies both linearly and quadratically over time. For more discussion on pipeline
cracks please see, for example, Kannappan (1986), Lu (1998) and Zhang et al. (1999).
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