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1. 1 Introduction

There are several tasks in the investment management process. These in-
clude setting the investment objectives, establishing an investment policy,
selecting a portfolio strategy, asset allocation, and measuring and evaluat-
ing performance. Bayesian methods have been either used or proposed as
a tool for improving the implementation of several of these tasks. There
are principal reasons for using Bayesian methods in the investment man-
agement process. First, they allow the investor to account for the uncer-
tainty about the parameters of the return-generating process and the distri-
butions of returns for asset classes and to incorporate prior beliefs in the
decision-making process.  Second, they address a deficiency of the stan-
dard statistical measures in conveying the economic significance of the in-
formation contained in the observed sample of data. Finally, they provide
an  analytically  and  computationally  manageable  framework  in  models
where a large number of variables and parameters makes classical formu-
lations a formidable challenge. 

The goal of this chapter is to survey selected Bayesian applications to
investment management. In Section 1.2, we discuss the single-period port-
folio problem, emphasizing how Bayesian methods improve the estimation
of the moments of returns, primarily the mean. In Section 1.3, we describe
the mechanism for incorporating asset-pricing models into the investment
decision-making process. Tests of mean-variance efficiency are surveyed
in Section 1.4. We explore the implications  of predictability for  invest-
ment management in Section 1.5 and then provide concluding remarks in
Section 1.6.

1.2. The Single-Period Portfolio Problem

The portfolio choice problem represents a primary example of decision-
making under uncertainty. Let 1+Tr  denote the vector (N × 1) of next-peri-
od  returns  and  W  current  wealth.  We  denote  next-period  wealth  by

( )11 '1 ++ += TT rWW ω  in  the  absence  of  a  risk-free  asset  and

( )11 '1 ++ ++= TfT rrWW ω  when  a  risk-free  asset  with  return  fr  is

present. Let ω  denote the vector of asset allocations (fractions of wealth
allocated to the corresponding stocks). In a one-period setting, the optimal
portfolio  decision consists  of choosing  ω  that  maximizes the expected
utility of next-period’s wealth,
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( )( ) ( ) ( )∫ ++ = drrpWUWUE TT θ
ωω

|maxmax 11 , (1.1)

subject to feasibility constraints, where  θ  is the parameter vector of the
return distribution and U  is a utility function generally characterized by a
quadratic or a negative exponential functional form. A key component of
Eq. (1.1)  is  the  distribution  of returns  ( )θ|rp ,  conditional  on the  un-

known parameter vector  θ . The traditional implementation of the mean-

variance framework1 proceeds with setting  θ  equal to its  estimate  ( )rθ̂
based on some estimator of the data r  (often the maximum likelihood es-
timator). Then, the investor’s problem in Eq. (1.1) leads to the optimal al-
location given by

( ) ( )( )rrUE θθωω
ω

ˆ|'maxarg* ==
.

(1.2)

The  solution  in  Eq.  (1.2),  known as  the  certainty  equivalent  solution,
treats the estimated parameters as the true ones and completely ignores the
effect of the estimation error on the optimal decision. The resulting portfo-
lio displays high sensitivity to small changes in the estimated mean, vari-
ance, and covariance, and usually contains large long and short positions
that are difficult to implement in practice.2 

Starting with the work of (Zellner and Chetty 1965), several early stud-
ies investigate the effect parameter uncertainty plays on optimal portfolio
choice by re-expressing Eq. (1.1) in terms of the predictive density func-
tion.3 The  predictive  density  function  reflects  estimation  risk  explicitly
since it  integrates over the posterior distribution, which summarizes the
uncertainty about the model parameters, updated with the information con-

1  The  mean-variance  selection  rule  of  (Markowitz’s  1952),  given  by

1'*,'..,'min =≥Σ ιωµµωωω
ω

ts , where µ  is the vector of expected re-

turns , Σ is the covariance matrix of returns, and  ι is a compatible vector of
ones, provides the same set of admissible portfolios as the quadratic-type ex-
pected-utility maximization in Eq. (1.1).  (Markowitz and Usmen 1996) point
out that the conventional wisdom that the necessary conditions for application
of mean-variance analysis are normal probability distribution and/or quadratic
utility is a “misimpression” (Markowitz and Usmen 1996, p. 217). Almost opti-
mal solutions are obtained using a variety of utility functions and distributions.
For example, it is possible to weaken the distribution condition to members of
the location-scale family. See (Ortobelli, Rachev, and Schwartz 2004). 

2  See, for example, (Best and Grauer 1991)
3  See,  for  example,  (Barry 1974;  Winkler  and Barry 1975;  Klein and Bawa

1976; Brown 1976; Jobson, Korkie and Ratti 1979; Jobson and Korkie 1980;
Chen and Brown 1983).
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tained in the observed data. The optimal Bayesian portfolio problem takes
the form:

( )( ){ }
( ) ( ) ( )∫∫ ++

+ =

rprpWU

WUEE

TT

Tr

||max

|max

11

1|

θθ

θ

ω

θθω

( ) ( ) ( )[ ]∫ ∫ ++ drdrprpWU TT θθθ
ω

||max 11
,

(1.3)

where by Bayes’ rule, the posterior density ( )rp |θ  is proportional to the
product  of  the  sampling  density  (the  likelihood function)  and the  prior
density, ( ) ( )θθ prf | .

The multivariate  normal distribution is  the simplest  and most conve-
nient choice of sampling distribution in the context of portfolio selection,
even though empirical evidence does not fully support this model.4 In the
case where no particular information (intuition) about the model parame-
ters is available prior to observing the data, the decision-maker has diffuse
(non-informative) prior beliefs, usually expressed in the form of the Jef-

frey’s prior  ( ) 2/)1(
,

+−Σ∝Σ N
p µ , where  µ  and Σ  are, respectively, the

mean vector and the covariance vector of the multivariate normal return
distribution, N is the number of assets in the investment universe, and ∝
denotes “proportional  to”.  The joint  predictive distribution of returns is
then a multivariate Student-t distribution.

Informative prior beliefs are usually cast in a conjugate framework to
ensure analytical tractability of the posterior and predictive distributions.
The predictive distribution is multivariate normal only when the covari-
ance Σ  is assumed known and µ  is asserted to have the conjugate prior

( )IN 2
0 ,τιµ , where  0µ  stands for the prior mean, ι  is a vector of ones,

and  I2τ is the diagonal prior  covariance matrix.  When both parameters
are unknown and conjugate priors are assumed (the conjugate prior for Σ
in a multivariate setting is an inverse-Wishart with scale parameter  1−S ,
where  S  is the sample covariance matrix), the predictive distribution is
multivariate Student-t.5

(Klein and Bawa 1976) compare the Bayesian and certainty equivalent
optimal solutions under the assumption of a diffuse prior for the parame-
ters of the multivariate normal returns distribution ((Barry 1974) asserts
informative priors) and show that in both cases the admissible sets are the

4  For example, see (Fama 1965).
5  See, for example, (Brown 1976)
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same up to a constant. However, the optimal choice differs in the two sce-
narios since portfolio risk is perceived differently in each case. Both the
optimal individual investor’s portfolio and the market portfolio have lower
expected returns in the Bayesian setting. (Brown 1976) shows that the fail-
ure to account for estimation risk leads to suboptimal solutions.

It is instructive to examine the posterior mean under the informative pri-
or assumption. Assuming that I2σ=Σ , the i th element of µ ’s posterior
mean has the form






 +





 +=

−

022

1

22
2 11

,| µ
τστσ

σµ ii r
TT

r
(1.4)

where ir  is the sample mean of asset i, and T is the sample size. The pos-
terior mean is a weighted average of the prior and sample information; that
is, the sample mean ir  of asset i is shrunk to the prior mean 0µ . The de-
gree of shrinkage depends on the strength of the confidence in the prior
distribution, as measured by the prior precision 2/1 τ . The higher the prior
precision,  the stronger  the influence of the  prior  mean on the posterior
mean.  Shrinking the sample mean reduces the sensitivity of the optimal
weights to the sampling error in it. As a result, weights take less extreme
values and their stability over time is improved. The prior distribution of
µ  could be made uninformative by choosing a very large prior variance
elements 2τ . In the extreme case of an infinite prior variance, the posteri-
or mean coincides with the sample mean and the correction for estimation
risk becomes insignificant (Brown 1979; Jorion 1985).

The approach of employing shrinkage estimators as a way of accounting
for uncertainty is rooted in statistics and can be traced back to (James and
Stein 1961), who recognized the inadmissibility of the sample mean in a
multivariate setting under a squared loss function. The James-Stein esti-
mator given by 

( ) rJS διµδµ −+= 1ˆ 0 ,
(1.5)

where  ( )tNt rrr ,,1 ...,,=  is  the vector  of  sample means,  has a uniformly

lower risk than  r , regardless of the point  0µ  towards which the means

are shrunk.6 However, the gains are greater the closer 0µ  is to the true val-
ue. For the special case when the return covariance matrix has the form

6  (Berger 1980) points out that the inadmissibility of the sample mean in the fre-
quentist case is translated into inadmissibility of the Bayesian rule under the as-
sumption of diffuse (improper) prior. 
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I2σ=Σ , 2σ  is known, and the number of assets N is greater than 2, the
weight δ  is given by









−Σ−
−= − )()'(

)2(
,1min

0
1

0 ιµιµ
δ

rr

TN
.

Within the portfolio selection context, the effort was initiated with the
papers of (Jobson, Korkie, and Ratti 1979; Jobson and Korkie 1980, 1981)
and developed by (Jorion 1985, 1986; Grauer and Hakansson 1990). (Du-
mas and Jacquillat 1990) discuss Bayes-Stein estimation in the context of
currency portfolio selection.

While the choice of prior distributions is often guided by considerations
of tractability,  the parameters of  the prior  distributions  (called hyperpa-
rameters) are determined in a rather subjective fashion. This has led some
researchers to embrace the empirical Bayes approach, which uses sample
information to determine the hyperparameter values and is at the heart of
the Bayesian interpretation of shrinkage estimators. The shrinkage target
is the grand mean of returns M: 

( ) ( )Στµ ,~ MNP .7 (1.6)

(Frost and Savarino 1986; and Jorion 1986) employ it in an examination
of the portfolio choice problem, asserting the conjugate inverse-Wishart
prior for Σ . They estimate the prior parameters via maximum likelihood,
assuming equality of the means, variances,  and covariances. Comparing
certainty-equivalent rates of return,  they find that the optimal portfolios
obtained in the Bayesian setting with informative priors outperform the
optimal choices under both the classical and diffuse Bayes frameworks.8

(Jorion 1986) assumes that  Σ  is known and is replaced by its sample

estimator S
NT

T

2

1

−−
−

. Jorion derives the so-called Bayes-Stein estimator

of expected returns – a weighted average of sample means and the mean of

the global minimum variance portfolio r
ιι

ι
1

1

' −

−

Σ
Σ

 (the solution to the vari-

ance minimization problem under the constraint that the weights sum to
unity).9 He finds that the Bayes-Stein shrinkage estimator outperforms sig-
nificantly  the  sample mean,  based  on comparison  of  the  empirical  risk

7  It is not unusual to assume that the degree of uncertainty about the mean vector
is proportional to the volatilities of returns. A value of τ  smaller than 1 reflects
the intuition that uncertainty about the mean is lower than uncertainty about the
individual returns.

8  A certainty-equivalent rate of return is the risk-free rate of return which pro-
vides the same utility as the return on a given combination of risky assets.  
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function.10 (Grauer and Hakansson 1990) observe that the portfolio strate-
gies  based  on the  Bayes-Stein and  the  James-Stein  estimators  are  only
marginally better than the historic mean strategies.

(Frost and Savarino 1986) obtain a shrinkage estimator not only for the
mean vector but also for the covariance matrix of the predictive returns
distribution, thus contributing to a relatively neglected area. A reason why
there are relatively more studies concerned only with uncertainty about the
mean (see also the discussion of the Black and Litterman model below)
may be that optimal portfolio choice is highly sensitive to estimation error
in the expected means, while variances and covariances (although also un-
known) are more stable over time ((Merton 1980)). However, given that
the optimal investor decision is the result of the trade-off between risk and
return, efficient  variance estimation seems to be no less important  than
mean estimation.11

1.3. Combining Prior Beliefs and Asset Pricing Models

(Ledoit and Wolf 2003) develop a shrinkage estimator for the covariance
matrix of returns in a portfolio selection setting, choosing as a shrinkage
target the covariance matrix estimated from Sharpe’s ( Sharpe 1963) sin-
gle-factor model of stock returns. They join a growing trend in the shrink-
age estimator literature of deriving the shrinkage target structure from a
model of market equilibrium. Equivalently, the asset pricing model serves
as the reference point around which the investor builds prior beliefs. There
is a trade-off then between the degree of confidence in the validity of the
model and the information content of the observed data sample. The influ-
ential  work  of  Black  and  Litterman (Black  and  Litterman  1990,  1991,
1992)  (BL)  presumably constitute  the  first  analysis  employing  this  ap-
proach.12 Their model allows for a smooth and flexible combination of an
asset  pricing model,  the  Capital  Asset  Pricing Model  (CAPM),  and in-

9  (Dumas and Jacquillat 1990) argue that in the international context this result
introduces country-specific bias. They advocate shrinkage towards a portfolio
which assigns equal weights to all currencies.

10  The empirical risk function is computed as the loss of utility due to the estima-

tion risk  ( ) ( )
max

max* ˆ
ˆ,

F

qFF
L

−
=ϖϖ  averaged over repeated samples, where

*ϖ  is the solution to (1) when the true parameter vector θ  is known, ϖ̂  is the

portfolio choice on the basis of the sample estimate  θ̂ ,  maxF and  F are the

corresponding values of the utility functions. 
11  See, for example, (Frankfurter, Phillips, and Seagle 1972).
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vestor’s views. The CAPM is assumed to hold in general, and investors’
beliefs about expected stock returns can be expressed in the form of devia-
tions from the model predictions.13 Interpretations of the BL methodology
from the Bayesian point of view are scarce (Satchell and Scowcroft 2000;
He and Litterman 1999; Lee 2000; Meucci 2005), although, undoubtedly,
the BL decision-maker is Bayesian, and somewhat ambiguous.

The excess returns of the  N assets  in the investment universe are as-
sumed to follow a multivariate normal distribution ( )Σ,~ µNr .14 The im-
plied equilibrium risk premiums Π  are used as a proxy for the true equi-
librium returns  and  the  distribution  of  expected  .equilibrium returns  is
centered on them, with a covariance matrix proportional to Σ :

( )ΣΠ τµ ,~ N (1.7)

where the scalar τ  indicates the degree of uncertainty in the CAPM.15 The
investor’s  views (linear combinations of expected asset  returns)  are ex-
pressed  as  probability  distributions  of  the  expected  returns  on  the  so-
called “view” portfolios:

( )Ω,~ QNPµ , (1.8)

where P  is a (K x N) matrix whose rows correspond to the K view portfo-

lio weights. The magnitudes of the elements  iϖ  of  Ω  represent the de-
gree of confidence the investor has in each view.

There is no consensus as to which one of the distributions in Eqs. (1.7
and 1.8) defines the prior and which one the sampling density. (Satchell
and Scowcroft 2000; Lee 2000; Meucci 2005) favor the position that the
investor views constitute the prior information which serves to update the
equilibrium distribution of expected returns (in the role of the sampling

12  For example, (Jorion 1991) mentions the possibility of using the CAPM equi-
librium forecasts to form prior beliefs but doesn’t pursue the idea further.

13  BL consider an equilibrium model, such as the CAPM, as the most appropriate
neutral shrinkage target for expected returns, since equilibrium returns clear the
market when all investors have homogeneous views.

14  The covariance matrix  Σ  is estimated outside of the model (see (Litterman
and Winkelmann 1998)) for the specific methodology) and considered as given.

15  The equilibrium risk premiums Π  are the expected stock returns in excess of
the risk-free rate, estimated within the CAPM framework. In the setting of the
BL model, the vector Π  is determined by a procedure appropriately called “re-
verse optimization”. The market-capitalization weights observed in the capital
market are considered the optimal weights *ω . Using the estimate Σ̂  of the
covariance matrix, the risk premiums are backed out of the standard mean-vari-

ance result ( ) ( )ΠΣΠΣ= −− 11 ˆ'/ˆ/1* ιλω , where λ  is the coefficient of rela-

tive risk aversion.
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distribution). This interpretation is in line with the Bayesian tradition of
using subjective beliefs  to construct  the prior  distribution.  On the other
hand, He and Litterman’s (He and Litterman 1999) reference to Eq. (1.8)
as the prior also has grounds in the Bayesian theory. Suppose that we are
able to take a sample from the population of future returns, in which our
subjective belief about the expected stock returns is realized. Then, a view
could be interpreted as the information contained in this hypothetical sam-
ple.16 The sample size corresponds to the degree of confidence the investor
has in his view.

The particular definition one adopts does not have a bearing on the re-
sults. Deriving the posterior distribution of expected returns is a straight-
forward application of conjugate analysis and yields the familiar result

( )VNQ
~

,~~,,,,| µτµ ΩΣΠ (1.9)

where the posterior mean and covariance matrix are given by

( )( ) ( )( )QPPP 11111 ''~ −−−−− Ω+ΠΣΩ+Σ= ττµ (1.10)

and

( )( ) 111 '
~ −−− Ω+Σ= PPV τ . (1.11)

The estimator of expected returns in Eq. (1.10) clearly has the form of a
shrinkage estimator (the weights of Π  and Q  sum up to 1). When the lev-
el of certainty about the equilibrium returns increases (τ  approaches 0),

their weight  ( )( ) ( ) 1111 ' −−−− ΣΩ+Σ ττ PP  increases and the investor opti-

mally holds the market portfolio. If, on the contrary, belief in the devia-
tions from equilibrium returns is strong, more weight is put on the views.
(Lee 2000) extends the BL model to the tactical allocation problem. The
equilibrium risk premiums Π  are replaced by the vector of expected ex-
cess  returns  corresponding to a neutral  position with respect  to tactical
bets, i.e., to holding the benchmark portfolio.

Admittedly, the BL methodology does not make use of all of the avail-
able information in historical returns, particularly, the sample means. (Pas-
tor 2000; Pastor and Stambaugh 1999) address this issue by developing a
framework in which uncertainty in the validity of the asset pricing model
is quantified in terms of the amount of model mispricing. The estimate of
expected returns is a weighted average between the model prediction and

16  See (Black and Litterman 1992) for this interpretation. Interpreting prior belief
in terms of a hypothetical sample is not uncommon in Bayesian analysis. See
also Stambaugh (1999).
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the sample mean, thus incorporating the benefits of both the Bayes-Stein
and the BL methodologies.17

Let the return generating process for the stock’s excess return be 

Ttfr ttt ...,,1' =++= εβα ,
(1.12)

where tf  denotes a (K x 1) vector of factor returns (returns to benchmark

portfolios), and  tε  is a mean-zero disturbance term. Then, the slopes of
the regression in Eq. (1.12) are stock’s sensitivities (betas). The stock’s
expected excess return implied by the model is

( ) ( )tt fErE 'β= (1.13)

That is, the model implies that 0=α .18 When the investor believes there is
some degree of pricing inefficiency in the model, the expected excess re-
turn will reflect this through an unknown mispricing term:

( ) ( )tt fErE 'βα += .
(1.14)

In a single factor model such as the CAPM, the benchmark portfolio is
the  market  portfolio.  In a  multifactor  model,  the  benchmarks  could  be
zero-investment,  non-investable  portfolios whose behavior replicates the
behavior of an underlying risk factor (sometimes called factor-mimicking
portfolios)19 or factors extracted from the cross-section of stock returns us-
ing principal components analysis.20. (Pastor 2000) investigates the impli-
cations for portfolio selection of varying prior beliefs about α . When be-
liefs about a pricing model are expressed, the prior mean of α , 0α , is set
equal to zero. It could have a non-zero value, when, for example, the in-
vestor expresses  uncertainty about an analyst’s  forecast.  The prior  vari-
ance  ασ  of  α  reflects the investor’s degree of confidence in the prior

mean – a zero value of  ασ  represents dogmatic belief in the validity of

the model;  ∞=ασ  suggests complete lack of confidence in its pricing
power. (Pastor and Stambaugh 1999), investigating the cost of equity of

17  The investigation of model uncertainty is expanded and explicitly modeled in
the context of return predictability using the Bayesian Model Averaging frame-
work by (Avramov 2000; Cremers 2002), among others. See Section 5.

18  α  is commonly interpreted as a representation of the skill of an active portfolio
manager. (Pastor and Stambaugh 2000) point out this interpretation is not infal-
lible. For example, the benchmarks used to define α  might not price all passive
investments.

19   See, for example, (Fama and French 1993).
20   See (Connor and Korajczyk 1986).
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individual firms, suggest that  0α  could be set equal to the average ordi-
nary least squares estimate from a subset (cross-section) of firms sharing
common characteristics.

(Pastor 2000) assumes normality of stock and factor returns, and conju-
gate uninformative priors for all parameters in Eq. (1.12) but  α . In the
special case of one stock and one benchmark, the optimal weight in the
stock is shown to be proportional to the ratio of the posterior mean of α
and the posterior  mean of  the  residual  variance,  2~/~ σα .  The  posterior
mean α~  has the form of a shrinkage estimator: 

( )( ) 











+





Ψ=




 −−−−

β
α

σ
β
α

β
α

ˆ
ˆ

'~
~

112

0

011 XXM

,

(1.15)

where

( )( ) 1121 '
−−− +Ψ= XXM σ ,

( ) 12 ' −XXσ  = (sample) covariance estimator of the least-squares esti-

mators α̂  and β̂ ,

( )( ) 112 '
−−XXσ  = sample precision matrix, and

1−Ψ  = prior precision matrix.
Pastor’s  results  demonstrate  greater  stability  of  optimal  portfolio

weights, which take less extreme values. Examining the home bias that is
observed in solutions to international asset allocation studies, Pastor finds
that the holdings of foreign equity observed for U.S. investors is consistent

with a prior standard deviation ασ  equal to 1% – evidence for strong be-

lief in the efficiency of the U.S. market portfolio.21

Building upon the recognition of the fact that no model is completely
accurate, (Pastor and Stambaugh 2000) undertake an empirical investiga-
tion comparing three asset pricing models from the perspective of optimal
portfolio choice, while accounting for investment constraints. The models
are: the CAPM, the Fama-French model, and the Daniel-Titman model22

21  Home bias is a term used to describe the observed  tendency of investors to
hold a larger proportion of their equity in domestic stocks than suggested by the
weight of their country in the value-weighted world equity portfolio

22  The (Fama and French 1993) model is a factor model in which expected stock
returns are linear functions of the stock loadings on common pervasive factors.
Book-to-market ratio and size-sorted portfolios are proxies for the factors. The
Daniel and Titman (1997) model is a characteristic-based model. Expected re-
turns are linear functions of firms’ characteristics. Co-movements of stocks are
explained with firms’ possessing common characteristics, rather than being ex-
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Pastor and Stambaugh explore the economic significance of different in-
vestors’  perceptions  of  the degree of model accuracy by comparing the
loss in certainty-equivalent return from holding portfolio A (the choice of
an investor with complete faith in model  A), when in fact the decision-
maker has full confidence in model  B or C. They observe that when the
degree of certainty in a model is less than 100%, cross-model differences
diminish  (the  certainty-equivalent  losses  are  smaller).  Investment  con-
straints dramatically reduce the differences between models, which is in
line with Wang’s (Wang 1998) conclusion that imposing constraints acts
to weaken the perception of inefficiency of the benchmark portfolio (see
Section 4).

1.4. Testing Portfolio Efficiency

Empirical  tests  of  mean-variance  efficiency  in  the  Bayesian  context  of
both the CAPM and the Arbitrage Pricing Theory (APT) could be divided
into two categories. The first one focuses on the intercepts of the multi-
variate regressions describing the CAPM

Nirr iMi ...,,1, =++= εβα (1.16)

and the APT

Ttuffr ttkktt ...,,1,... ,,11 =++++= ββα
,

(1.17)

where returns are in risk-premium form (in excess of the risk-free rate),

Mr  in (1.16) is the market risk premium, tjf ,  is the risk premium (return)

of factor  j at time t, and jβ  is return’s exposure (sensitivity) to factor  j.

As in the previous section, the pricing implications of the CAPM and the
APT yield the restriction that the elements of the parameter vector α  are
jointly equal to zero. Therefore, the null hypothesis of mean-variance effi-
ciency is equivalent to the null hypothesis of no mispricing in the model.23

The test relies on the computation of the posterior odds ratio.
At the heart of the tests in the second category lies the computation of

the posterior distributions of certain measures of portfolio inefficiency. A
strand of the pricing model testing literature focuses on the utility loss as a

posed to the same risk factors, as in the Fama-French model.
23  When returns are expressed in risk-premium form, and expected returns are lin-

ear combinations of exposures to K sources of risk, the mean-variance efficient
portfolio is a combination of the K benchmark (factor) portfolios and perform-
ing the test above in the context of the APT is equivalent to testing for mean-
variance efficiency of this portfolio.
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measure of the economic significance of deviations from the pricing re-
strictions, for example, by comparing the certainty-equivalent rate of re-
turn. (McCulloch and Rossi 1990) follow this approach.

1.4.1 Tests involving posterior odds ratios

(Shanken 1987; Harvey and Zhou 1990; McCulloch and Rossi 1991) em-
ploy posterior odds ratios to test the point hypotheses of the restrictions
implied by the CAPM (the first two studies) and the APT (the third study).

The test of efficiency can be expressed in the usual way:

0:0 =αH  vs. 0:1 ≠αH (1.18)

The investor’s belief that the null hypothesis is true is incorporated in the
prior  odds ratio,  and then updated with the data to obtain the posterior
odds ratio. The posterior odds ratio is the product of the ratio of predictive
densities under the two hypotheses and the prior odds and is given by
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(1.19)

where  r  denotes the data.24 It is often assumed that  the prior  odds is 1
when no particular prior intuition favoring the null or the alternative ex-
ists. Then, G becomes:
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(1.20)

where ( )0|, =Σ αβL  is the likelihood function ( )Σ,, βαL  evaluated at

0=α . Since the posterior odds ratio is interpreted as the probability that
the null is true divided by the probability that the alternative is true, a low
value of the posterior odds provides evidence against the null hypothesis
that the benchmark portfolio is mean-variance efficient.

Assume the disturbances in Eq. (1.16) are identically and independently
distributed (i.i.d.) normal with a zero mean vector and a covariance matrix
Σ .  (Harvey and Zhou 1990)  explore  three  distributional  scenarios  –  a
multivariate Cauchy distribution, a multivariate normal distribution, and a
Savage density ratio approach. In the first two scenarios, the prior distribu-
tion under the null is taken to be a diffuse one:

( ) 2/)1(

0 ,
+−Σ∝Σ N

p β . (1.21)

24  We assume that ( )0=αp  and ( )0≠αp  are strictly greater than zero.
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Under the alternative, the prior is

( ) ( )ΣΣ∝Σ +−
|,,

2/)1(

1 αβα fp
N

, (1.22)

where ( )Σ|αf  is the prior density function of α  (a multivariate Cauchy
or a multivariate normal). Following (McCulloch and Rossi 1991), Harvey
and Zhou investigate also the so-called Savage density ratio method,25 as-
serting  a  conjugate  prior  under  the  alternative  hypothesis,

( ) ( ) ( )ΣΣ=Σ IWNp |,,,1 βαβα  (N denotes normal density,  IW denotes
inverted Wishart density)). The prior under the null is:
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Large deviations of the intercepts from zero, under the multivariate nor-
mal prior, intuitively, provide greater evidence against the null hypothesis
than  large  deviations  from  zero  under  the  multivariate  Cauchy  prior.
Therefore, the normal prior is expected to produce lower posterior odds
ratio than the Cauchy prior.

The Savage density assumption leads to a simplification of the posterior
odds. Assuming a prior odds ratio equal to 1,
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(1.24)

where both the marginal posterior density of α  in the numerator and  the
prior density in the denominator can be shown to be multivariate Student-t
densitites.

In an examination of the efficiency of the market index, (Harvey and
Zhou 1990)  find that  the  posterior  odds  increase  monotonically  for  in-
creasing levels of dispersion in the prior  distributions. Both the Cauchy
and the  normal  priors  provide  evidence  against  the  null.  The  posterior
probability of mean-variance efficiency varies between 8.9% and 15.5%
under the normal assumption,  and between 26.2% and 27.2% under the
Cauchy assumption. The Savage prior case is analyzed for three different
prior assumptions of relative efficiency of the market portfolio, reflected
in the choice of hyperparameters of  β  and  Σ .26 The Savage prior offers

25  The Savage density ratio method involves selecting a particular form of the pri-
or density under the null, as in Eq. (1.23), which results in the simplification of
the posterior odds ratio in Eq. (1.24).

26  Relative efficiency is measured by the correlation ρ  between the given bench-

mark index and the tangency portfolio; 1=ρ  implies efficiency of the bench-



1. Bayesian Applications to the Investment Management Process      15

more evidence against the null, compared to the normal and Cauchy priors
– the probability of efficiency is generally less than 1%.

(McCulloch  and  Rossi  1991)  explore  the  pricing implications  of  the
APT and observe great variability of the posterior odds ratio in response to
changing levels of spread of the Savage prior.27 The ratio in the high-spread
specification  exceeds  the  one  in  the  low-spread  case  by more  than  40
times when a five-factor model is considered. Overall,  evidence against
the null hypothesis is weak in the case of the one-factor model (except in
the high-variance scenario) and mixed in the case of the five-factor model.
McCulloch  and  Rossi  caution,  however,  against  drawing  conclusions
about the benefit of adding more factors to the one-factor model. The ad-
dition of factors needs to be analyzed in a different posterior-odds frame-
work, in which the restriction of zero coefficients of the new factors is im-
posed.

1.4.2 Tests involving inefficiency measures

Investors are often less interested in an efficiency test offering a “binary”
outcome (reject/do not reject) than in an investigation of the degree of in-
efficiency of a benchmark portfolio. (Kandel, McCulloch, and Stambaugh
1995)  target  this  argument  and  develop  a  framework  for  testing  the
CAPM, in which the posterior distribution of an inefficiency measure is
computed.28 (Wang 1998) extends their analysis to incorporate investment
constraints.

Denote by p the portfolio whose efficiency is being tested and by x  the
efficient portfolio with the same variance as p. Then, the observation that
the expected return of  p is less than or equal to the expected return of  x
immediately suggests an intuitive measure of portfolio p’s inefficiency:

mark. (Shanken 1987) shows that in the presence of a risk-free asset,  ρ  is
equal to the ratio between the Sharpe measure (ratio) of the benchmark portfo-
lio  and  Sharpe  measure  of  the  tangency  portfolio  (which  is  the  maximum
Sharpe measure).

27  A parallel could be drawn between McCulloch and Rossi’s (McCulloch 1990,
1991) investigation and the traditional two-pass regression procedure for testing
the APT. The authors first extract the factors using the principal components
approach of (Connor and Korajzcyk 1986) and then perform the Bayesian anal-
ysis. In contrast, (Geweke and Zhou 1996) adopt a single-stage procedure in
which the posterior distribution of a measure of the APT pricing error is ob-
tained numerically. Admittedly, the Geweke-Zhou approach could only be em-
ployed to a  relatively small number of assets, in contrast to the McCulloch-
Rossi approach.

28  (Shanken 1987; Harvey and Zhou 1990) also discuss similar measures.



16      Bagasheva, Rachev, Hsu, Fabozzi 

px µµ −=∆
,

(1.25)

where jµ  denotes the expected return of portfolio j. The benchmark port-

folio is efficient if and only if 0=∆ . The non-negative value of ∆  could
also be interpreted as the loss of expected return from holding portfolio p
instead of the efficient portfolio  x (carrying the same risk as  p). Another
measure of inefficiency explored by Kandel, McCulloch, and Stambaugh
is ρ , the correlation between p and any efficient portfolio. The posterior
density of ∆  and ρ  does not have a closed-form solution under standard
diffuse  prior assumptions about  the mean vector  µ  and the covariance
matrix  Σ  of the risky asset  returns. An application of the Monte Carlo
methodology, however, makes its evaluation straightforward. Suppose the
posterior density of the mean and covariance are given by ( )r,| Σµp  and

( )r|Σp , respectively. Then, a draw from the (approximate) posterior dis-
tribution of ∆  and ρ  is obtained by drawing repeatedly from the posteri-
or distributions of µ  and Σ  and then computing the corresponding values
of  ∆  and ρ .

Kandel, McCulloch, and Stambaugh observe an interesting divergence
of results depending on whether or not a risk-free asset is available in the
capital market. For example, in the absence of a risk-free asset, most of the
mass of ρ ’s posterior distribution lies between -0.1 and 0.3, while when
the risk-free asset is included, the posterior mass shifts to the interval 0.89
to 0.94 (suggesting a shift from a very weak to a very strong correlation
between the benchmark and the efficient portfolio). Similarly, the posteri-
or mass of ∆  lies farther away from 0=∆  in the former than in the latter
case. An investigation into the extent that the data influence the posterior
of ρ  reveals that informative, rather than diffuse, priors are necessary to
extract the information of inefficiency contained in the data in the pres-
ence of a risk-free asset and, in general, the prior’s influence on the poste-
rior is strong. When the risk-free asset is excluded, the data update the pri-
or better, and the results show that the benchmark portfolio (composed of
NYSE and AMEX stocks) is highly correlated with the efficient portfolio.

The  methodology  of  Kandel,  McCulloch,  and  Stambaugh  is  easily
adapted to account for investment constraints in testing for mean-variance
efficiency of a portfolio. (Wang 1998) proposes to modify  ∆  in the fol-
lowing way to incorporate short-sale constraints:

[ ]ppp xxxxxxx Σ≤Σ≥−=∆ '',0|''max
~ µµ

,
(1.26)
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where px are the weights of the given benchmark portfolio under consid-

eration,  x are  the weights of the efficient portfolio, and µ'x  and  µ'px

are the expected portfolio returns, denoted by xµ and pµ , respectively, in

(1.25). The constraint modification to reflect a 50% margin requirement29

is Nixi ...,,1,5.0 =−≥ . For each set of draws of the approximate poste-

riors of µ  and Σ , the constrained optimization in (1.26) is performed and
a draw of ∆  is obtained.

Wang compares the posterior distributions of the inefficiency measures
with  and  without  investment  constraints.  When  no  constraints  are  im-
posed, the posterior mean of ∆~  is 20.9% (indicating that a portfolio out-
performing the benchmark by 20% could be constructed).  Imposing the
50% margin constraint brings the values of the posterior mean of ∆~  down
to 8.37%, while when short sales are not allowed, the posterior mean de-
creases to 4.25%. Thus, the benchmark’s inefficiency decreases as stricter
investment constraints are included in the analysis. Additionally, (Wang
1998) observes that  uncertainty about the degree of mispricing declines
with the imposition of constraints, making the posterior distribution of ∆~
less dispersed.

1.5 Return Predictability

Predictability in returns impacts optimal portfolio choice in several ways.
First, it brings in horizon effects. Second, it makes possible the implemen-
tation of market timing strategies. Third, it introduces different sources of
hedging demand. In this section we will explore how these three conse-
quences of predictability are examined in the Bayesian literature. 

With the exception of (Kothari  and Shanken 1997) who investigate a
Bayesian test of the null hypothesis of no predictability, most of the pre-
dictability literature focuses on the implications of predictability for the
optimal portfolio choice, rather than on accepting or rejecting the null hy-
pothesis,  since  portfolio  performance  and  utility  gains  (losses)  provide
natural measures to assess predictability power.

29  A 50% margin requirement is a restriction on the size of the total short sale po-
sition an investor could take. The short sale position can be no more than 50%
of the invested capital.
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1.5.1 The static portfolio problem

The vector autoregressive (VAR) framework is a convenient and compact
tool to model the return-generating process and the dynamics of the en-
dogenous predictive variables.  For the simple case of  one predictor,  its
form is:
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where tr is the excess stock return (return on a portfolio of stocks) in peri-

od t, 1−tx  is a lagged predictor variable, whose dynamics is described by a

first-order  autoregressive  model,  and  tε  and  tu  are  correlated  distur-

bances. The vector ( ) ', tt uε  is assumed to have a bivariate normal distri-
bution with a zero mean vector and a covariance matrix
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The predictor is a variable such as the dividend yield, the book-to-market
ratio, and interest rate variables, or lagged values of the continuously com-
pounded excess return tr .30

The dividend yield is considered a prime predictor candidate and all of
the studies discussed below use it as the sole return predictor.

The investor maximizes the expected utility, weighted by the predictive
distribution as in Eq. (1.1).

(Kandel and Stambaugh 1996) examine the problem in Eq. (1.1) in a
static, single-period investment horizon setting, while (Barberis 2000) ex-
tends it to consider multi-period horizon stock allocations with optimal re-
balancing. Kandel and Stambaugh investigate a no-predictability informa-
tive prior for B  and Σ . They do so by constructing it as the posterior dis-
tribution  that  would  result  from  combining  the  diffuse  prior

( ) 2/)2(
,

+−Σ∝Σ N
Bp with a hypothetical sample identical to the real sam-

ple, save for a sample coefficient of determination 2R  equal to zero.31 The
behavior of the optimal stock allocations is analyzed over a range of val-

30  Numerous empirical studies of predictability have identified variables with pre-
dictive power. See, for example, (Fama 1991).

31  In a related paper, (Stambaugh 1999) characterizes the economic importance of
the sample evidence of predictability by considering hypothetical samples car-
rying the same information content about B  and Σ  as the actual sample but
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ues of the predictors, for a number of samples that differ by the number of
predictors N, the sample size T, and the regression 2R . Kandel and Stam-
baugh’s results confirm an intuitive relation between the optimal stock al-
location and the current value of the predictor variable,  Tx . Specifically,
the greater the positive difference between the one-step ahead fitted value

Txb̂  and the returns’ long-term average  xbr ˆ= , the higher the stock al-

location.
Kandel and Stambaugh put forward a related criterion for assessing the

economic significance of predictability evidence. The optimal allocation
aω  in the case when xxT =  (where  x  is the long-term average of the

predictor variable) is no longer optimal when xxT ≠ . Then, a compari-
son of the certainty-equivalent returns associated with the expected utili-
ties of the optimal allocations when xxT =  and when xxT ≠  allows one
to examine the economic implications (if any).

(Kandel and Stambaugh 1996) emphasize the important departure of the
evidence of economic significance from the evidence of statistical signifi-
cance. For example, given an 2R  (unadjusted) from the predictive regres-
sion of only 0.025 (implying a p-value of 0.75 of the standard regression F
statistic), the investor optimally allocates 0% of his wealth to stocks when

predicted return Txb̂  is one standard deviation below its long-term aver-

age r , but 61% when rxb T =ˆ , under a diffuse prior and a coefficient of

risk aversion equal to 2. Under the no-predictability informative prior, the
allocations are, respectively, 53% and 83%. Therefore, statistical insignifi-
cance of the predictability evidence does not translate into economic in-
significance.

The mechanism through which predictability affects portfolio choice is
further enriched by the investigation of (Barberis 2000), who ties the Kan-
del and Stambaugh’s framework to the issue of a varying investment hori-
zon. Incorporating parameter uncertainty into the portfolio problem tends
to reduce optimal stock holdings, and this horizon effect is, not surprising-
ly, stronger at a long-horizon than at a short-horizon. In contrast, when the
possibility of predictable returns is taken into account, perceived risk of
stocks by a buy-and-hold investor at long horizons diminishes because the
variance of cumulative returns grows slower than linearly with the hori-
zon. Thus, a higher proportion of wealth is allocated to stocks at long hori-
zons compared with the case when returns are assumed to be  i.i.d. and

differing in the value of Ty .
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these differences increase with the horizon.32 Analyzing the interaction of
the  two opposing tendencies,  Barberis  finds  that  introducing estimation
risk, in a static setting, reduces the horizon effect for a risk-averse investor
– the uncertainty about the process parameters adds to uncertainty about
the forecasting power of the predictor(s) and increases risk at longer hori-
zons. As a result,  the  10-year buy-and-hold  portfolio  strategy of an in-
vestor with a risk aversion parameter of 10, who takes both predictability
and uncertainty into account, results in up to a 50% lower allocation com-
pared to the case of predictability only, with no estimation risk.

Both (Barberis 2000) and (Stambaugh 1999) explore the sensitivity of
the optimal allocation to varying the initial predictor’s value,  0x . Long-
horizon allocations under uncertainty generally increase with the horizon
for low starting values of the predictor and decrease for high starting val-
ues, leading to a lesser sensitivity to the predictor’s starting value. Stam-
baugh demonstrates that treating 0x  as a stochastic realization of the same

process  that  generated  Txxx ...,,, 21 ,  compared  to  considering  it  fixed,
brings  in  additional  information  about  the  regression  parameters  and
changes their posterior means. He observes that, when estimation risk is
incorporated, the long-horizon (in particular, 20-years) optimal allocation
is often decreasing in the predictor, even though expected return is not.
This pattern can be ascribed to the skewness of the predictive distribution.
Incorporating uncertainty (particularly  the  uncertainty  about  the  autore-
gressive coefficient  of the  predictor)  induces positive skewness for low
initial  values of the predictor (leading to high allocations)  and negative
skewness for high initial values (leading to low allocations).

1.5.2 The dynamic portfolio problem

As mentioned  earlier,  market-timing is  one  of  the  modifications  to  the
portfolio allocation problem resulting from predictability. Suppose that an
investor at time T with an investment horizon TT ˆ+  has a dynamic strate-

gy and rebalances at each of the dates  1ˆ...,,1 −++ TTT .  The new in-

tertemporal context of the problem allows us to consider a new aspect of

32  Empirically observed mean-reversion in returns (negative serial  correlation)
helps explain the horizon effect. However, Barberis notes that predictability it-
self may be sufficient to induce this effect, if not mean-reversion. Specifically,
the negative correlation between the unexpected returns and the dividend yield
innovations is one condition for the horizon effect. See also (Avramov 2000),
and Section 5 below.
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parameter uncertainty33 – not only does the investor not know the true pa-
rameters of the return generating process but the relationship between the
returns  and  the  predictors  may  also  be  time-varying.  At  time  T,  the
Bayesian investor solves the portfolio problem taking into account that at
each rebalancing date, the posterior distribution of the parameters is up-
dated with the new information. It turns out that this “learning” (Bayesian
updating) process plays an important role in the way the investment hori-
zon affects optimal allocations.34 The underlying factor driving changes in
allocations across horizons is now a hedging demand – a risk-averse in-
vestor attempts to hedge against the perceived changes in the investment
opportunity set (equivalently, in the state variables).35 

(Barberis 2000) considers a discrete dynamic setting with i.i.d. stock re-
turns to explore the effects of learning about the unconditional mean of re-
turns and finds that uncertainty induces a very strong negative hedging de-
mand at long horizons.36 A long-horizon investor who admits the possibili-
ty of learning about the unconditional mean in the future allocates substan-
tially less to stocks than an investor with a buy-and-hold strategy.

While the  framework introduced by Barberis  involves learning about
the unconditional mean of returns only, (Brandt, Goyal, Santa-Clara, and
Stroud 2004) address simultaneous learning about all model parameters.
The utility loss from ignoring learning is substantial but is negatively re-
lated to the amount of past data available and to the investor’s risk aver-
sion parameter. Brandt et. al observe that the utility gains from accounting
for uncertainty or for learning are of comparable size, and increasing with
the horizon and the current predictor value. They break down the hedging
demand and analyze its components – (1) the positive hedging component
arising from the negative correlation between returns  and changes in the

33  An early discussion of the Bayesian dynamic portfolio problem in a discrete-
time setting (without accounting for predictability) can be found in (Winkler
and Barry 1975).  (Grauer and Hakansson 1990) examine the performance of
shrinkage and CAPM estimators in a dynamic, discrete-time setting.

34  (Merton 1971; Williams 1977) show that incorporating learning in a dynamic
problem leads to the creation of a new state variable representing the investor’s
current beliefs. Here, the new state variables are the posterior estimates of the
unknown parameters,  whose dynamics might be  nonlinear.  If  learning is  ig-
nored, the current dividend yield is the only state variable, and it fully charac-
terizes the predictive return distribution.

35  Hedging demands are introduced by (Merton 1973). An investor who is more
risk averse than the log-utility case (i.e., with a coefficient of risk aversion high-
er than 1) aims at hedging against reinvestment risk and increases his demand
for stocks when their expected returns are low. Recall that expected stock re-
turns are negatively correlated with realized stock returns.

36  The intuition behind the negative hedging demand is that an unexpectedly large
return leads to an upward revision of unconditional expected return 
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dividend yield and (2) the negative hedging component due to the positive
correlation between returns and changes in the model parameters. The ag-
gregate effect can be positive at short horizons (up to five years) but turns
negative for longer horizons.

Brandt et. al observe that learning about the mean of the dividend yield
and about the correlation between returns and the dividend yield induce a
positive hedging demand which could partially offset the negative hedging
demand above.

A question of practical importance to investors is whether it is possible
to take advantage of the evidence of predictability in practice. (Lewellen
and Shanken 2002) offer an insightful answer which is unfortunately dis-
appointing.  They find  that  patterns  in  stock returns,  like  predictability,
which a researcher observes, cannot be perceived by a rational investor.

1.5.3 Model Uncertainty

(Avramov 2000; Cremers 2002) address what could be viewed as a defi-
ciency shared by the predictability investigations above – model  uncer-
tainty, introduced by selecting and treating a certain return-generating pro-
cess as if it were the true process. At the heart of Bayesian Model Averag-
ing (BMA) is computing a weighted Bayesian predictive distribution of
the “grand” model, in which individual models are weighted by their pos-
terior distributions.37

Suppose that each individual model has the form of a linear predictive
regression:

tjjtjt Bxr ,1, ε+= − ,
(1.28)

where 

tr  = (N x 1) vector of excess returns on N portfolios, 

( )1,1, ,1 −− = tjtj zx ,

1, −tjz  = ( jk x 1) vector of predictors, observed at the end of t - 1, that

belong to model j, 

jB  = (( 1+jk ) x N) matrix of regression coefficients, and

tj ,ε  = disturbance of model j, assumed to be normally distributed with

mean  0  and  covariance  matrix  jΣ  (Avramov)  or  Σ  (Cremers).38 The

framework requires that two groups of priors be specified – model priors

37  If  K variables are entertained as potential predictors, there are  K2  possible
models. 
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(i.e., priors of inclusion of each variable in an individual model), and pri-

ors  on the parameters  jB  and  jΣ of each model.  Each model could be

viewed  equally  likely  a  priori,  and  assigned  the  diffuse  prior
( ) K

jMP 2/1= , where KjM j ...,,1, = is the j th model. A different prior

ties the model selection problem with the variable selection problem, as in
(Cremers 2002):

( ) ( ) jj kKk
jMP −−= ρρ 1 , (1.29)

where ρ  denotes the probability of inclusion of a variable in model j (as-
sumed equal for all variables, but easily generalized to reflect different de-
grees of prior confidence in subsets of the predictors).39

No predictability (no confidence in any of the potential predictors)  is
equivalent to not including any of the explanatory variables in the regres-
sion in (1.28). Then, returns are i.i.d., and, using (1.29), the model prior is

( ) ( ) K
jMP ρ−= 1 .

The posterior probability of model jM  is given by
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where  tΦ  denotes  all  sample  information  available  up  to  time  t.  The

marginal  likelihood function  ( )jt MP |Φ  is obtained by integrating out

the parameters jB  and jΣ :
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(1.31)

where  ( )jjjj MBL ,;, ΦΣ  is  the  likelihood  function  corresponding  to

model  jM ,  ( )jjj MBP |,Σ  is the joint prior and ( )jjjj MBP ,|, ΦΣ  is

the joint posterior of the model parameters.
The weighted predictive return distribution is given by:

38  Both Avramov and Cremers treat the regression parameters jB  as fixed. (Dan-

gl, Halling and Randl 2005) consider a BMA framework with time-varying pa-
rameters. 

39  (Pastor and Stambaugh 1999) observe that when the set of models considered
includes one with a strong theoretical motivation (e.g., the CAPM), assigning a
higher prior model probability to it is reasonable.
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where Tt
R ˆ+  is the predicted cumulative return over the investment horizon

T̂ .
To express prior views on predictability, Cremers considers three quan-

tities  directly  related  to  it:  the  expected  coefficient  of  determination,
( )2RE , the expected covariance of returns, ( )ΣE , and the probability of

variable inclusion, ρ . He asserts conjugate priors for the parameters and
includes a hyperparameter which penalizes large models. (Avramov 2000)

uses a prior specification for jB  and jΣ  based on the one of (Kandel and

Stambaugh 1996). The size of the hypothetical  prior  sample,  0T ,  deter-

mines the strength of belief in lack of predictability (as 0T  increases, be-
lief in predictability diminishes).

Both Cremers and Avramov find in-sample and out-of-sample evidence
of predictability.40 Avramov estimates a VAR model similar to Eq. (1.27).
His variance decomposition of predicted stock returns into model risk, es-
timation risk, and uncertainty due to forecast error shows that model un-
certainty  plays  a  bigger  role  than  parameter  uncertainty.  He  finds  that
model uncertainty is proportional to the distance of the current predictor
values from their sample means. To gauge the economic significance of
accounting for model uncertainty, Avramov uses the difference in certain-
ty equivalent metric and reaches an interesting result: the optimal alloca-
tion for a buy-and-hold investor is not sensitive to the investment horizon.
This finding is contrary to the general findings of the Bayesian predictabil-
ity literature. He ascribes the finding to the positive correlation between
the unexpected returns and the innovations on the predictors with the high-
est posterior probability. The dividend yield, which is most often the only
predictor in predictability investigations, has a lower posterior probability
than the term premium and market premium predictors, and therefore, a
smaller influence in the “grand” model (confirmed by Cremers’ results).

40   Other empirical studies of return predictability include (Lamoureux and Zhou
1996; Neely and Weller 2000; Shanken and Tamayo 2001; Avramov and Chor-
dia 2005).
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1.6. Conclusion

The application of Bayesian methods to investment management is a vi-
brant and constantly evolving one. Space constraints did not allow us to
review many worthy contributions.41 Active research is being conducted in
the areas of volatility modeling, time series models, and regime-switching
models.  Recent  examples  of  stochastic  volatility  investigations  include
(Jacquier,  Polson,  and  Rossi  1994;  Mahieu  and  Schotman 1998;  Uhlig
1997);  time  series  models  are  explored  by  (Aguilar  and  West  2000;
Kleibergen  and  Van  Dijk  1993;  Henneke,  Rachev,  and  Fabozzi  2006);
regime switching has been discussed by (Hayes and Upton 1986; So, Lam,
and Li 1998), and employed by (Neely and Weller 2000). 

Bayesian  methods  provide  the  necessary  toolset  when  heavy-tailed
characteristics of stock returns are analyzed. (Buckle 1995; Tsionas 1999)
model returns with symmetric  stable  distribution, while  (Fernandez and
Steel 1998) develop and employ a skewed Student t parameterization.
These investigations have been made possible thanks to great advances in
computational  methods,  such  as  Markov  Chain  Monte  Carlo  (see
Bauwens, Lubrano, and Richard 2000)).

The individual investment management areas mentioned above, several
of which were surveyed in the previous sections, will continue to evolve in
future works. We see the main challenge lying in their integration into co-
herent financial models. Without doubt, Bayesian methods are the indis-
pensable framework for embracing and addressing the ensuing complexi-
ties.
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