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Bayesian Inference for Model Choice

John S.J. Hsu and Thomas Leonard

Two nested or non-nested candidate sampling models for an observed data set may be com-

pared by consideration of summaries of a probability plot, which contrasts the posterior

quantiles of the log-likelihoods under the two models. The procedures address both prefer-

ence inference and refutation inference, and extensions to DIC and alternatives to AIC are

developed. Preference inference favors models with more parameters, perhaps on a tentative

basis when further data are anticipated, while refutation inference emphasizes parameter

parsimony. A characterization relating to an α-profile motivates the comparison of the pos-

terior medians of the log-likelihoods, when considering simple model preference. For nested

models, a stronger omega-preference procedure is developed via a Bayes-frequency compro-

mise. The Bayes-frequency performances of the different preference and refutation inference

procedures are investigated when the models are nested. While attention is primarily con-

fined to model inference within the linear paradigm, most of the methods are approximately

applicable in a range of non-linear cases. A Gamma approximation to an Upsilon distribu-

tion facilitates a general approach, for the linear model with unknown variance. A data set

for 71 hypertensive diabetic patients is analyzed, and a symptom of high blood pressure is

related to four out of the eight explanatory variables available.
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1. INTRODUCTION

Consider two candidate sampling models M1 and M2 for an n× 1 vector of observations

y = (y1, y2, . . . , yn)T . Under model M i and for i = 1, 2, y is a realization of a random vector

Y with joint density or probability mass function ηi(y|θi), where the functional form of ηi

is specified, and θi is a pi × 1 vector of unknown parameters, with p1 ≤ p2. The vector θi

is taken to possess some prior distribution, given M i, under each choice of sampling model.

Attention is for simplicity confined to situations where, for i = 1, 2, the posterior distribution

given M i of the likelihood

`i = `i(θi|y) = ηi(y|θi) (1.1)

possesses a continuous density over some interval with positive support. This condition

ensures that all internal posterior percentiles of the `i are uniquely defined. It is also assumed

that each `i has a finite maximum, given the observed y.

Aitkin (1991, 1997) measures the evidence in the data in favor of M1 when compared

with M2 by the posterior Bayes factor

B∗ = `∗1/`
∗
2 , (1.2)

where, for i = 1, 2, `∗i denotes the posterior expectation given Mi of `i. Aitkin shows that in

some nested cases his criterion calibrates well with frequency probabilities. He hence avoids

many of the pitfalls surrounding Lindley’s paradox (for example, Lindley, 1957; Shafer,

1982; Sellke et al., 2001) that are experienced by ordinary Bayes factors. The latter can in

particular heavily favor M1 in nested situations where a classical significance test heavily

favors M2. Aitkin also circumvents the high sensitivity (for example, O’Hagan, 1995) of

ordinary Bayes factors to the choices of the prior distributions of the θi, for example to the

tail behavior of prior densities. These problems can become particularly acute when the

prior information is vague, in which case the `∗i can be much less sensitive.

While ordinary Bayes factors can be developed via elementary applications of Bayes’

theorem, with positive prior probabilities (not depending upon the θi) assigned to M1 and

M2, posterior Bayes factors are not open to possible justifications of this type. The compar-

ison of summaries of the conditional posterior distributions of the `i, without reference to

prior probabilities on the M i, has however been considered by many authors. Rather than

comparing the `∗i , Dempster (1974), Spiegelhalter et al. (2002), van der Linde (2005), and

many others, address the DIC criteria

φ∗i = E[φi|y,M i] (i = 1, 2) , (1.3)

2



where φi = log `i.

In many examples, in particular under the special formulation described in section 2, φ∗i
either equals or may be approximated for large n by φ̂i− 1

2
pi, where φ̂i denotes the maximized

log-likelihood. This expression may be contrasted with the AIC criteria (Akaike, 1978),

φ̂∗i = φ̂i − pi (i = 1, 2) , (1.4)

which introduce heavier penalties for each parameter in the models. The criteria in (1.4) are

more appealing when judging whether to refute the model of lower dimensionality, rather

than when just making a statement of model preference. The parallel problems of preference

inference and refutation inference will be addressed throughout the current paper.

It is however useful to compare the entire posterior distributions of φ1 and φ2. Together

with any related alternatives to penalized likelihoods, these will, in many standard examples,

depend approximately upon just n, the φ̂i and the pi, and not unduly upon further measures

of model complexity. For i = 1, 2, let

Ωi(d) = p(φi > d|y,Mi) , (1.5)

and let φ̃i denote the posterior median of φi. Model M2 will be said to be MIC preferred

to model M1 if φ̃2 > φ̃1. Furthermore, M1 can be regarded as refutable against M2 for low

values of

α1 = Ω1(φ̃2) , (1.6)

together with high values of

α2 = Ω2(φ̃1) . (1.7)

One sensible loose sense measure of the evidence in the data in favor ofM2 when compared

with M1 is provided by the α-profile

α =




α2 if α2 ≥ 0.5

1− α1 if α2 < 0.5 ,
(1.8)

which contrasts with the suggestion by Good(1991) that logarithms of ordinary Bayes factors

provide the only valid measures of evidence. Good’s formulation does not address Lindley’s

paradox, or over-sensitivity problems with respect to the prior assumptions. His specially

axiomatized measures of evidence can however be readily updatable in the light of further

data. The α-profile is less readily updatable since the effect of fresh data should be evaluated

after updating the entire posterior distributions of the log-likelihoods. This extra complexity

preserves information, and is not necessarily a disadvantage, given the other summaries of

these distributions which are available.
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Consider now the implications of the equivalence relation

α1 ≤ α2 ⇔ φ̃1 ≤ φ̃2 , (1.9)

with α1 = α2 if and only if φ̃1 = φ̃2. The equivalence in (1.9) would not generally be true if

φ̃1 and φ̃2 were replaced in (1.6) and (1.7) by other posterior measures of location of the φi.

This characterization motivates comparisons of the φ̃i, rather than the φ∗i or the `∗i , when

addressing preference inference. Comparisons of the posterior medians of the t(φi), where t

is strictly increasing, are of course transformation-invariant.

Whether or not preference inference should be completed by simple comparisons of pos-

terior measures of location of the φi provides another key issue. In particular, if φ̃1 is slightly

less than φ̃2, then M1 might still be preferable to M2, if φ1 possesses less posterior variability.

In section 2, a Bayes-frequency compromise will address this problem when M1 is nested into

M2.

Johnson (2005) recommends some useful alternatives to ordinary Bayes factors, when

M1 is nested into M2, by contrasting the distribution given M1 of a single dimensional

test statistic which is ancillary under M1, with its marginal distribution given M2, under

a prior distribution which expresses uncertainty about the hypothesis that M1 is true. He

estimates a hyperparameter by its marginal maximum likelihood estimate, yielding an esti-

mated dimensionality-reduced Bayes factor with appealing properties when p2 − p1 is large.

See section 7 for further discussion. Other contributions to the general area include Han

and Carlin (2001), Berger and Guglielmi (2001), Lee and Berger (2001), Berger and Pericchi

(2004) and Barbieri and Berger (2004).

2. A QUANTILE-QUANTILE APPROACH

For i = 1, 2, and for 0 ≤ βi < 1, let bi = λi(βi) denote the (1−βi)th quantile of φi, where

λi = Ω−1
i is the inverse of the function in (1.5). Model M1 should be refuted against model

M2 if b2 ≥ b1 for a convincing selection of choices of β1 and β2. However

b2 ≥ b1 ⇔ (β1, β2) ∈ Λ , (2.1)

where

Λ = {(β1, β2) ∈ QU : λ2(β2) ≥ λ1(β1)} , (2.2)

with QU = {(β1, β2) : 0 ≤ β1, β2 < 1}. Then (β1, β2) ∈ Λ provides convenient shorthand

notation for saying that “the 100(1−β2)th posterior percentile given M2 of φ2 is not exceeded

by the 100(1− β1)th posterior percentile given M1 of φ1.”
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In order to refute M1 in favor of M2 we will require that (β1, β2) ∈ Λ for low enough values

of β1, and high enough values of β2. We will also require that (β, β) ∈ Λ for an appropriately

large region of β values. The Λ region should provide a convincingly prevalent subset of QU ,

with enough concentration towards the upper left closure point (β1, β2) = (0, 1) of this unit

quadrant.

Consider, the situation where, for each θi in pi dimensional Euclidean space Rpi , the

log-likelihoods satisfy

φi = φ̂i − 1

2
wi (i = 1, 2) , (2.3)

with φ̂i denoting the ith maximized log-likelihood,

wi = (θi − θ̂i)
TC−1

i (θi − θ̂i) (i = 1, 2) (2.4)

and θ̂i and Ci representing the corresponding maximum likelihood vectors and likelihood

dispersion matrices. This standard representation holds exactly whenever, the sampling

distribution of Y given θi and Mi is multivariate normal for i = 1, 2, with

Y|θi,Mi ∼ N [Xiθi,Di] (2.5)

where the Xi and Di are specified n × pi and n × n matrices, and the XT
i D−1

i Xi are non-

singular. Furthermore, with appropriate parametric normalizing parametrizations, the rep-

resentation holds approximately when the sample sizes are finite for many other models, for

example, for generalized linear models with logit or logarithmic link functions for multino-

mial, Poisson, or exponential data.

When (2.3) and (2.4) hold, prior information regarding the θi can be readily incorporated

via assumptions of multivariate normal prior distributions for the θi. Whether or not to

complicate the issue of sampling model comparison with two confounding choices of prior

distribution is open to discussion. However, if the prior distribution given Mi of each θi

is uniform over Rpi , then the posterior distribution given Mi of wi in (2.4) is quite simply

chi-squared χ2
pi

with pi degrees of freedom. We therefore follow Aitken by proceeding with

these technically convenient assumptions.

In the exact special case, the uniform prior distributions yield

Λ = {(β1, β2) ∈ QU : T ≥ τp2(β2)− τp1(β1)} , (2.6)

where

T = 2(φ̂2 − φ̂1) (2.7)
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denotes the observed log-likelihood ratio statistic and for i = 1, 2, τpi
= Ψ−1

pi
is the inverse

of the cumulative distribution function (c.d.f) Ψpi
of a χ2

pi
distribution. For i = 1, 2, the

posterior medians of the φi are φ̃i = φ̂i − 1
2
medpi

, where medpi
= τpi

(0.5). The probabilities

in (1.6) and (1.7) satisfy

α1 = Ψp1(medp2 − T ) , (2.8)

and

α2 = Ψp2(T +medp1) . (2.9)

In situations where M1 is nested into M2 and T is a realization given M1 of a χ2
p2−p1

variate, the expression for α2 in (2.9) may be contrasted with the observed Type I frequency

success probability

γ∗ = Ψp2−p1(T ) (2.10)

for the likelihood ratio test. The representation in (2.10) applies exactly when (2.5) holds,

with M1 is nested into M2 and D1 = D2 = σ2In, for some common specified variance σ2,

where In is the n × n identity matrix. The result also holds exactly under a variety of

more general covariance assumptions. Approximate justifications of (2.10) for a variety of

other nested models, including generalized linear models, are discussed by Dobson (1990,

p. 61). As p2 gets large and for any fixed p1, the probabilities in (2.9) and (2.10) calibrate

perfectly when regarded as functions of T . However α2 < γ∗ for any finite p2 whenever

T > medp2 − medp1 , i.e., φ̃2 > φ̃1. Nevertheless, α2 and γ∗ are well enough calibrated for

finite p2 to preclude an extreme analogue of Lindley’s paradox when employing α in (1.8) as

a measure of evidence.

The Λ region in (2.6) consists of all points in QU falling on or below an upper boundary

U of posterior probabilities, defined by the curve

β2 = Ψp2{T + τp1(β1)} (0 ≤ β1, β2 < 1) , (2.11)

which is strictly increasing between (β1, β2) = {0,Ψp2(T )} and the upper right closure point

(β1, β2) = (1, 1). When φ̃2 > φ̃1, so that T > medp2 −medp1 , (β1, β2) = (1
2
, 1

2
) falls below U

and (β1, β2) = (1
2
, α2) provides the central point where U intersects the vertical β2 = 1

2
line.

When φ̃1 > φ̃2, (β1, β2) = (1
2
, 1

2
) falls above U , and the boundary point (β1, β2) = (α1,

1
2
)

becomes more relevant. The α-profile in (1.8) therefore always represents some central point

on U .

In Fig 1, the quadrant QU is depicted together with the curve in (2.11) when p1 = 2,

p2 = 10, and T = 11. It is useful in visual terms to include the β1 = 1
2
, β2 = 1

2
, β2 = β1

and β2 = 1− β1 lines, and to highlight the points (0.314, 0.686), (1
2
, α2) = (0.500, 0.740) and
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Figure 1: An upper boundary U

(0.872, 0.872) of intersection of U with this Union Jack configuration. The U boundary will

always intersect the β2 = 1 − β1 line at a unique point, and a unique point of intersection

of the U boundary with the β2 = β1 line is guaranteed, when T ≥ 0. A visual plot of U ,

together with experience from other data sets, and consideration of other models, may be

used more generally to judge whether to refute M1 against M2. Guidance is provided by

the α-profile, together with two further profiles qsp and bsp which respectively relate to the

points where U intersects the β2 = 1− β1 and β2 = β1 lines.

Definition 1: The quantile significance profile qsp is the largest β∗ such that (1 − β, β) ∈ Λ

for all β ≤ β∗.

Definition 2: The Bayesian significance profile bsp, if this exists, is the largest β∗ such that

(β1, β2) ∈ Λ for all β1 ≥ β∗ and β2 ≤ β∗.

Under the special formulation in (2.3) and (2.4), qsp may be obtained by solving (2.11)

with β1 = 1− β∗ and β2 = β∗, and consequently uniquely satisfies the equation

T = τp2(β
∗)− τp1(1− β∗) (2.12)

in β∗. If T ≥ 0, then bsp solves (2.11) with β1 = β∗ and β2 = β∗ and therefore uniquely

satisfies the equation

T = τp2(β
∗)− τp1(β

∗) (2.13)

in β∗. Then bsp provides the largest β∗ such that (β∗, β∗) ∈ Λ, and relates to a concept of

partial stochastic dominance.

If φ̃2 > φ̃1 then qsp < α2 < bsp and high values of the three key profiles qsp, α2 and bsp

indicate possible refutation of M1 in favor of M2. However moderately high values of qsp and
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α2 should be regarded as more convincing than extremely high values of bsp. For example,

if qsp = 0.9 then the tenth posterior percentile of φ2 equals the ninetieth posterior percentile

of φ1. If also bsp = 0.99 then the first posterior percentile of φ1 and φ2 are equal, and any

posterior percentile of φ2 above the first exceeds the corresponding posterior percentile of

φ1. If say, α2 = 0.92, then a larger value of bsp exceeding 0.99, for example, bsp = 0.9999,

would not appear to provide substantial further evidence against M1.

We now consider a rather heuristic idea, which will be justified in sections 4 and 7 by its

Bayes-frequency properties. When M1 is nested into M2, we recommend seeking a critical

value of To of T equating the Type I frequency probability γ∗ in (2.10) with the value of

bsp satisfying (2.13) when T = To. The corresponding common value of γ∗ and bsp will be

referred to as the matched significance probability msp.

When φ̃2 > φ̃1, it would be impossible to instead match γ∗ with qsp or α2 since qsp <

α2 < γ∗. However, bsp > γ∗ whenever γ∗ > msp, and bsp < γ∗ whenever γ∗ < msp.

Furthermore msp satisfies the algebraically appealing equation

τp2−p1(β
∗) = τp2(β

∗)− τp1(β
∗) (2.14)

in β∗. The solution for msp may be interpreted as uniquely satisfying the property that M2

should be preferred to M1, if and only if both γ∗ in (2.10) and bsp exceed msp. All properties

and inequalities relating γ∗, bsp and msp may be clarified upon plotting and comparing the

intersecting and strictly increasing graphs of γ∗ and bsp against critical values To of T .

These graphs also motivate a Bayes-frequency compromise, which will be shown in sections

3, 7, and 8 to be slightly stronger than MIC preference. The following definition is also

intended to apply more generally, to situations where the Type I frequency probability in

(2.10) assumes different forms.

Definition 3: If M1 is nested into M2 and under assumptions where msp uniquely exists, M2

is omega-preferred to M1 if the observed γ∗ exceeds msp.

When considering either nested or non-nested models, a concept of tau-dominance, as

defined below, may be considered for refutation inference. When the models are non-nested,

the availability of qsp and the α-profile compensates for the lack of a single frequency prob-

ability that addresses the evidence in the data in a simple manner. If M1 is nested into M2

then bsp may also be usefully reported.

Definition 4: Model M2 tau-dominates model M1 with quantile significance profile qsp if qsp

exceeds 0.75.

The curve in Fig 1 yields the values qsp = 0.686, α = 0.740, and bsp = 0.872 for the three

Bayesian profiles. As qsp ≤ 0.75, model M2 does not tau-dominate model M1. However,
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Figure 2: Upper boundaries for six critical values To of T (ν = 4)

msp = 0.669 when p1 = 2 and p2 = 10, and the frequency success probability for T = 11 is

γ∗ = Ψ(11) = 0.798. As γ∗ > msp, or equivalently bsp > msp, model M2 is omega-preferred

to model M2. Model M2 is also MIC preferred to model M1, since the critical value for

MIC preference is To = med10 −med2 = 7.966, corresponding to γ∗ = 0.562. The critical

value for omega-preference is To = 9.141.

When considering both preference and refutation inference for l models M1,M2, . . . ,Ml,

with respective number of parameters p1, p2, . . . , pl, a preliminary scan is recommended,

before applying the preceding ideas to the detailed comparisons of important pairs of models.

For each i = 1, 2, . . . , l, the three posterior quantiles QIC1i, QIC2i, and QIC3i of the −2φi

may be reported and contrasted with the criteria DIC∗ = −2φ∗i and AIC∗ = −2φ̂i + 2pi.

The models may then be evaluated according to the MIC preference and tau-dominance

criteria. Model Mi tau-dominates model Mk whenever QIC3i < QIC1k.

3. INVESTIGATING EQUALITY

Under model M2 take the elements Yi of Y to be independent and respectively normally

N(θi, σ
2) distributed, for i = 1, 2, . . . , n, where σ2 is specified. Let M1 represent the reduced

form of M2 which takes each θi to equal a common unknown value θ. Let T =
∑

(yi− ȳ)2/σ2

denote the log-likelihood ratio statistic which under M1 is the realization of a χ2
ν variate,

with ν = n − 1. The six curves in Fig 2 describe the upper boundary U in (2.11) for the

following six critical values of To for T when p1 = 1 and p2 = n = 5 and under appropriate

uniform prior assumptions for the unknown parameters:

(1) The MIC critical value, To = medn −med1,
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(2) The omega-preference value, To = τn(β∗)− τ1(β
∗), where β∗ satisfies (2.14),

(3) The tau-dominance critical value, To = τn(0.75)− τ1(0.25),

(4) The α2 = 0.90 critical value, To = τn(0.90)−med1,

(5) The bsp = 0.95 value, To = τn(0.95)− τ1(0.95),

(6) The bsp = 0.99 value, To = τn(0.99)− τ1(0.99).

Table 1: Bayesian Profiles and Type I Frequency Success Probabilities

To qsp α2 bsp γ∗

(1) 3.897 0.500 0.500 0.500 0.580

(2) 5.176 0.632 0.656 0.730 0.730

(3) 6.524 0.750 0.778 0.899 0.837

(4) 8.781 0.883 0.900 0.994 0.933

(5) 7.229 0.800 0.825 0.950 0.876

(6) 8.451 0.868 0.887 0.990 0.924

(7) 9.488 0.909 0.923 0.998 0.950

(8) 13.277 0.979 0.983 1.000 0.990

These six values for To are listed in the second column of Table 1, followed by the critical

values for the 5% and 1% level tests in rows (7) and (8). In the third to sixth columns,

the corresponding values of the three profiles qsp, α2 and bsp, and the γ∗ = Ψν(To), are

listed. The critical value To = 3.897, corresponding to MIC preference, yields curve (1),

which traverses the central point (β1, β2) = (1
2
, 1

2
) of QU . Curve (2) is slightly more closely

directed towards the upper left vertex (β1, β2) = (0, 1). This curve corresponds to To = 5.176

and omega preference. This larger value for To indirectly takes into account the spread as

well as the locations of the posterior distributions of the log-likelihoods, and is proposed for

preference inference.

Values of T exceeding T = To = 6.524 would provide clearer evidence to refute M1 in

favor of M2. This critical value relates to the qsp = 0.75 curve (3) which traverses the point

(β1, β2) = (1
4
, 3

4
) and roughly speaking splits the upper left subquadrant of QU into halves.

The concept of tau-dominance appears to be plausible for mild refutation inference.

The critical values To = 7.229 and To = 8.451 yield bsp = 0.95 and 0.99 and curves (5)

and (6) respectively. These facilitate stronger Bayesian inferences regarding the refutation

of M1 in favor of M2. They correspond to respective significance probabilities 1−γ∗ = 0.124

and 0.076 and contrast with the critical values To = 9.488 and To = 13.277 for the classical
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5% and 1% fixed size log-likelihood ratio tests. The critical value when α2 = 0.90 is instead

To = 8.781 and this yields curve (4) in Fig 2.

Table 2: Critical Values To for Varying ν

ν (1) (2) (3) (4) (5) (6) (7) (8) 2ν

1 0.93 1.54 2.67 4.15 2.15 2.58 3.84 6.63 2
2 1.91 2.80 4.01 5.80 3.97 4.71 5.99 9.21 4
3 2.90 4.00 5.28 7.32 5.65 6.64 7.81 11.34 6
4 3.90 5.18 6.52 8.78 7.23 8.45 9.49 13.28 8
5 4.89 6.33 7.74 10.19 8.75 10.18 11.07 15.09 10
6 5.89 7.47 8.94 11.56 10.23 11.84 12.59 16.81 12
7 6.89 8.60 10.12 12.91 11.67 13.46 14.07 18.48 14
8 7.89 9.72 11.29 14.23 13.08 15.03 15.51 20.09 16
9 8.89 10.84 12.45 15.53 14.47 16.57 16.92 21.67 18

10 9.89 11.94 13.60 16.82 15.83 18.09 18.31 23.21 20
15 14.88 17.42 19.27 23.09 22.45 25.37 25.00 30.58 30
20 19.88 22.82 24.83 29.16 28.83 32.30 31.41 37.57 40
30 29.88 33.49 35.79 40.97 41.14 45.56 43.77 50.89 60
60 59.88 65.02 67.94 75.06 76.39 82.96 79.08 88.38 120

100 99.88 106.53 110.08 119.13 121.61 130.35 124.34 135.82 200

The values of ν = n − 1 in Table 2 are also the critical values of T for simple DIC

preference. These slightly exceed the MIC preference values (1). The values of 2ν in the

last column are the critical values for T corresponding to the AIC criteria. These may are

useful for refutation inference, in particular when ν ≤ 30, though they become quite large

in comparison with the other entries when ν is very large. The omega-preference values (2)

fall between the MIC values (1) and the tau-dominance critical values (3). The bsp = 0.95

values (5) are always less than the critical values (7) for the 5% likelihood ratio test, and the

bsp = 0.99 values (6) may be similarly compared with the values (8) for the 1% test. The

α2 = 0.90 values (4) are, for small ν, larger than both the bsp = 0.95 values and the 5% test

critical values, but become more conservative for large ν.

4. BAYES-FREQUENCY CALCULATIONS

In the special case discussed in section 3 and with θ = (θ1, θ2, . . . , θn)T , a Type II
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frequency success probability

κ∗ = p(T ≥ To|θ,M2) (4.1)

may be calculated for any critical value To, where T now represents a non-central chi-squared

variate, with ν degrees of freedom and non-centrality parameter ψ =
∑

(θi − θ̄)2/2σ2. It

can however be easier to calculate an average Type II probability κ = E[κ∗], where the

expectation is with respect to an appropriate mixing distribution on θi, in this case not the

prior distribution. If the θi are independent and N(µ, σ2
o) distributed, then the marginal

distribution given M2 of σ2T/(σ2 + σ2
o) is central χ2

ν so that

κ = κ(ξ) = 1−Ψν [To/{1 + (ξ2/medν}] (0 < ξ <∞) , (4.2)

where ξ2 = σ2
omedν/σ

2 is the difference between the marginal medians of T , given M2, and

given M1. The ξ parametrization sensibly scales the curves in (4.2) for varying ν.

When seeking choices of To which balance the Type I success probability γ∗ = Ψν(To)

and the average Type II success probabilities, it is useful to plot the curves

MINSP (ξ) = min{γ∗, κ(ξ)} (4.3)

and

AV ESP (ξ) = {γ∗ + κ(ξ)}/2 , (4.4)

for 0 < ξ < ∞. In Figs 3 and 4, these curves are contrasted when ν = 4 for three critical

choices To of T , namely (a) the MIC value 3.897 (b) the omega-preference value 5.176

and (c) the tau-dominance value 6.524. Omega-preference yields superior MINSP values

(≥ 0.580) when compared with MIC for all values of ξ such that ξ ≥ 1.642, and superior

AV ESP values (≥ 0.514) when compared with MIC for all values of ξ such that ξ ≥ 0.961.

Overall comparisons of curves (a) and (b) in Figs 3 and 4 suggests that omega-preference

yields slightly more reasonable and more balanced average success probability properties than

simple MIC preference. This provides a Bayes-frequency justification for omega-preference.

Omega-preference yields superior MINSP values (≤ 0.730) when compared with tau-

dominance for all values of ξ such that ξ ≤ 2.727, and superior AV ESP values (≤ 0.704)

when compared with tau-dominance for all values of ξ such that ξ ≤ 0.564. Overall compar-

isons of curves (b) and (c) of Figs 3 and 4 suggest that omega-preference and tau-dominance

possess equitable average success probability properties. Both criteria should perhaps be

considered when contemplating simple model preference, though tau-dominance provides

more evidence for refutation of the simpler model. In Table 3, the points of intersection of

the (a) and (b) curves and (b) and (c) curves are reported for both MINSP and AV ESP
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Figure 4: AVESP (ν = 4)

and a range of values of ν. Comparisons of the unreported full average success probability

curves would justify extending our preceding conclusions for ν = 4 to general ν.

Similar AV ESP and MINSP comparisons may be made for a variety of critical values

for refutation inference. For example, when ν = 9, the tau-dominance criterion possesses

superior AV ESP when compared with the bsp(95%) criterion for all values of ξ whenever

ξ < 3.819 and AV ESP < 0.811 and superior MINSP whenever ξ < 3.376 and MINSP <

0.811. Again when ν = 9, the bsp(95%) criterion possesses superior AV ESP when compared

with the fixed size 5% level significance test whenever ξ < 4.977 and AV ESP < 0.893

and superior MINSP whenever ξ < 4.495 and MINSP < 0.895. Qualitatively similar

conclusions hold for general ν and for fixed levels of the criteria other than 5%. Further

13



Table 3: Intersection Points of Success Probability Curves

ν (1) (2) (3) (4)

1 (1.812,0.665) (3.981,0.785) (0.467,0.547) (1.388,0.686)

2 (1.615,0.615) (2.900,0.753) (0.710,0.556) (1.727,0.697)

3 (1.616,0.593) (2.749,0.739) (0.855,0.561) (1.907,0.702)

4 (1.642,0.580) (2.727,0.730) (0.961,0.564) (2.036,0.704)

5 (1.674,0.571) (2.740,0.725) (1.045,0.567) (2.139,0.706)

6 (1.705,0.564) (2.767,0.721) (1.116,0.568) (2.225,0.707)

7 (1.736,0.559) (2.799,0.717) (1.177,0.570) (2.301,0.708)

8 (1.765,0.556) (2.834,0.715) (1.230,0.571) (2.368,0.708)

9 (1.793,0.552) (2.868,0.713) (1.279,0.572) (2.430,0.709)

10 (1.820,0.549) (2.903,0.711) (1.322,0.573) (2.486,0.709)

15 (1.936,0.540) (3.063,0.706) (1.498,0.576) (2.715,0.711)

20 (2.033,0.535) (3.202,0.702) (1.631,0.578) (2.893,0.712)

30 (2.187,0.528) (3.431,0.698) (1.831,0.581) (3.166,0.713)

60 (2.506,0.520) (3.915,0.694) (2.214,0.584) (3.707,0.714)

100 (2.789,0.515) (4.349,0.691) (2.535,0.585) (4.173,0.714)

(1) MINSP , MIC and omega-preference

(2) MINSP , omega-preference and tau-dominance

(3) AV ESP , MIC and omega-preference

(4) AV ESP , omega-preference and tau-dominance

comparisons indicate that the AIC = 2ν criterion does not perform particularly well when

ν is very large. For example, when ν = 100 the α2(0.99%) criterion To = 135.82 possesses

superior AV ESP when compared with AIC = 200 when ξ < 13.575 and AV ESP < 0.982,

and superior MINSP when ξ < 13.575 and MINSP < 0.990.

A Bayes-frequency alternative λ to the Bayesian profiles qsp, α2, and bsp is now intro-

duced. For any fixed ξ, AV ESP in (4.4) is maximized with respect to To whenever

To = ν(1 +R−1) log(1 +R)

where R = ξ2/medv = σ2
o/σ

2. Let MAXAV ESP (ξ) denote the corresponding maximizing

value of AV ESP .

14



Definition 5: The critical value of To is lambda-optimal at level λ if To maximizes AV ESP (ξ)

with respect to To for some ξ, and MAXAV ESP (ξ) = λ.

The lambda-optimal critical value for To may be plotted as a strictly increasing function

of ξ, and the corresponding values of λ calculated. Therefore λ may be plotted against To.

The results in Table 4 indicate close calibrations between the values of the Bayesian profiles

qsp and α2 and the Bayes-frequency criterion λ, when λ ≥ 0.750. Both qsp and α2 are quite

close to λ even when ν = 1 and the accuracy of calibration increases as ν increases. Indeed,

the interval (qsp, α2) always contains λ. This result is unexpected given the very different

formulations for λ and our other criteria.

A similar Bayes-frequency formulation, but based upon the MINSP criterion leads to

slightly less convincing calibrations with qsp and α2. Indeed the preceding close calibrations

of qsp and α2 with the AV ESP criterion, do not extend to the more general situations

described in section 2, when p1 ≥ 2 (see section 7). However, λ will be more generally

recommended, together with qsp and α2, as a useful criterion for refutation inference.

5. THE UPSILON DISTRIBUTION

Consider the standard linear model where Y|θ, σ2 ∼ N [Xθ, σ2In], with R = XTX non-

singular, θ denoting an unknown p × 1 vector of parameters, and σ2 also unknown. If the

prior distribution of (θ, log σ2) is uniform on Rp+1, then the conditional posterior distribution

of θ given σ2 is N [θ̂, σ2R−1], where θ̂ is the least squares vector. Furthermore, the posterior

distribution of U = S2/σ2 is χ2
ν , where ν = n− p and S2 denotes the observed residual sum

of squares. If φ and φ̂ are respectively the log-likelihood, and maximized log-likelihood, of θ

and σ2, then Υ = 2(φ̂− φ) satisfies

Υ = U + σ−2(θ − θ̂)TR(θ − θ̂)− n logU + n log n− n , (5.1)

so that, in the posterior assessment,

Υ
d∼ n log n− n− n logχ2

ν + χ2
ν + χ2

p , (5.2)

where χ2
ν and χ2

p are independent chi-squared variates, with the designated degrees of free-

dom.

Definition 6: A random variable Υ satisfying (5.2) with ν = n − p is said to possess an Υ-

distribution with sample size n and ν degrees of freedom. If ν is set equal to n in (5.2), and

the χ2
p term omitted, then Υ possesses an Υ-distribution with sample size n and n degrees

of freedom.
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Table 4: Bayes-Frequency Calibrations

ξ To λ qsp α2 bsp γ∗

2.003 2.54 0.750 0.735 0.777 0.988 0.889
2.782 3.06 0.800 0.791 0.828 0.999 0.920

ν = 1 4.092 3.73 0.850 0.848 0.877 1.000 0.947
6.784 4.67 0.900 0.904 0.923 1.000 0.969

15.316 6.26 0.950 0.956 0.965 1.000 0.988
92.277 9.84 0.990 0.993 0.994 1.000 0.998

2.403 6.33 0.750 0.735 0.763 0.881 0.824
2.897 7.02 0.800 0.786 0.812 0.937 0.865

ν = 4 3.532 7.87 0.850 0.839 0.861 0.977 0.904
4.456 9.04 0.900 0.893 0.909 0.996 0.940
6.190 10.96 0.950 0.948 0.956 1.000 0.973

11.486 15.16 0.990 0.990 0.992 1.000 0.996

2.817 13.39 0.750 0.738 0.758 0.829 0.797
3.287 14.33 0.800 0.788 0.807 0.888 0.842

ν = 10 3.843 15.48 0.850 0.840 0.856 0.938 0.884
4.577 17.01 0.900 0.893 0.905 0.977 0.926
5.772 19.45 0.950 0.947 0.953 0.997 0.965
8.565 24.58 0.990 0.990 0.991 1.000 0.994

3.226 24.62 0.750 0.741 0.756 0.804 0.783
3.711 25.86 0.800 0.791 0.805 0.861 0.829

ν = 20 4.265 27.36 0.850 0.842 0.854 0.914 0.874
4.961 29.32 0.900 0.894 0.903 0.959 0.918
6.026 32.40 0.950 0.947 0.952 0.991 0.961
8.238 38.71 0.990 0.989 0.991 1.000 0.993

4.573 109.86 0.750 0.745 0.753 0.773 0.765
5.172 112.40 0.800 0.795 0.802 0.827 0.813

ν = 100 5.823 115.40 0.850 0.846 0.852 0.879 0.861
6.597 119.26 0.900 0.897 0.901 0.928 0.908
7.686 125.14 0.950 0.948 0.951 0.972 0.955
9.650 136.69 0.990 0.990 0.990 0.998 0.991
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For ν < n, the c.d.f. of this Υn
ν distribution is

Υn
ν (d) = EΨp[n logU − U + d− log n+ n] (0 < d <∞) (5.3)

where the expectation should be taken with respect to a χ2
ν distribution for U . Following

standard asymptotics surrounding the approximations discussed in section 2, Υ will converge

in distribution to a χ2
p+1 variate as n→∞, with p fixed. However, for finite n the posterior

distribution of θ and log σ2 is only roughly multivariate normal, and the distribution of Υ

may not be closely approximated by χ2
p+1.

The distribution of Υ may be more accurately approximated, when n is finite and ν < n,

by a Gamma distribution with mean

E∗[Υ] = n(log n− log ν + ν−1) (5.4)

and variance

var∗[Υ] = 2ν−1n(p+ ν−1n) . (5.5)

which may be justified via a finite ν entropy argument described by Leonard and Hsu (1999,

p. 36). They show that the distribution of logχ2
ν is approximately normal with saddle-point

accuracy, with mean

E∗[logχ2
ν ] = log ν − ν−1 (5.6)

and variance 2ν−1. The exact mean and variance of logχ2
ν may be expressed in terms of the

digamma and trigamma functions, and the variance is twice the derivative with respect to

ν of the mean. Differentiating (5.6) motivates the adjusted approximation

var∗[logχ2
ν ] = 2(ν−1 + ν−2) (5.7)

to the variance. Furthermore, cov(χ2
ν , logχ2

ν) is exactly equal to two. Combining these

results gives from (5.2), and after some slight algebraic rearrangements, the expressions in

(5.4) and (5.5). A Gamma distribution with this mean and variance is recommended as an

approximation to the Υn
ν distribution.

The expressions in (5.4) and (5.5) respectively converge to p+ 1 and 2(p+ 1) as n→∞,

with p fixed, as required by the χ2
p+1 limit. In the special case where the mean vector of y

is specified and only σ2 is unknown, ν in (5.2) should be set equal to n, and the χ2
p term

omitted. In this case, setting p = 0 in the preceding Gamma approximation suggests a finite

sample χ2
1 approximation to a Υn

n distribution.

The c.d.f of the Gamma approximation gives three decimal point accuracy when com-

pared with the exact c.d.f. for many values of n and ν, while a χ2
p+1 approximation does
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not provide such accuracy. This accuracy is for example available even when (p, n) =

(0, 40), (15, 20), (30, 40), or (50, 60), and for all values of p and n considered in sections

7 and 8. All subsequent numerical calculations in this paper will be reported subject to

Gamma approximations of this type.

6. COMPARING LINEAR MODELS

Consider now the comparisons of models M1 and M2, where, for i = 1, 2, Y given

Mi follows the specification in (2.5), with Di = σ2
i In, where σ2

i is unknown, and XT
i Xi is

nonsingular. The observed log-likelihood ratio statistic T for comparing M1 and M2 may be

expressed in the form

T = n log(1 + δF ) , (6.1)

where δ = ω/ν2 and

F = δ−1(S2
1 − S2

2)/S
2
2 , (6.2)

with ω = p2−p1, ν2 = n−p2 and where, for i = 1, 2, S2
i is the residual sum of squares under

model Mi. If M1 is nested into M2 the random analogue F̃ of (6.2) is F ω
ν2

distributed given

M1, i.e., F -distributed with ω and ν2 degrees of freedom.

For i = 1, 2, we take the prior distribution given Mi of (θi, log σ2
i ) to be uniform over

Rpi+1. Then, following the representations of section 5, the log-likelihoods φi of the βi and

σ2
i may be expressed in the forms

φi = φ̂i − 1

2
Υi , (6.3)

where, for i = 1, 2, the posterior distribution of Υi is Υn
νi

with νi = n− pi. The maximized

log-likelihood φ̂i satisfies −2φ̂i = n logS2
i + κn, where κn = n log(2π) − n log n + n. The

Gamma representation described in section 5 may be employed when approximating the

posterior means, quantiles, and c.d.f.’s of each Υi in (6.3). The DIC criterion in (1.3)

satisfies, to a close approximation,

−2φ∗i = −2φ̂i + n(log n− log νi + ν−1
i ) , (6.4)

and the Λ region in (2.2) consists of all points in QU falling on or below an upper boundary

U satisfying

β2 = Υn
ν2
{T + τp1(β1)} (0 ≤ β1, β2 < 1) , (6.5)

where, for i = 1, 2, τpi
is redefined to be the inverse of the c.d.f. Υn

νi
of a Υn

νi
variate.
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With the recently redefined notation, qsp and bsp still solve the equations for β∗ in (2.12)

and (2.13). When M1 is nested into M2. the Type I success probability for a critical value

To of T satisfies

γ∗ = F ω
ν2

(Fo) , (6.6)

where Fo = δ−1{exp(To/n) − 1} and F ω
ν2

is the c.d.f. of the corresponding F -distribution.

Consequently, the matched significance probabilitymsp, introduced in section 2, now satisfies

the equation

n log{1 + δfω
ν2

(β∗)} = τp2(β
∗)− τp1(β

∗) (6.7)

in β∗, where fω
ν2

is the inverse of the c.d.f. in (6.6). The concept of omega-preference, as

introduced in Definition 3 of section 2, can therefore be applied to the current situation.

7. FURTHER BAYES-FREQUENCY CALCULATIONS

Under the formulation of section 6 consider the nested situation where θ2
T = (θ1

T ,θ∗
T )T

and X2
T = (X1

T ,X∗
T )T and θ∗ and X∗ denote an ω × 1 vector and n × ω matrix, with

ω = p2− p1. Given θ2, σ
2
2, and M2, (S2

1 −S2
2)/σ

2
2 is a realization of a non-central chi-squared

variate with ω degrees of freedom, and non-centrality parameter

ψ = θT
∗Wθ∗/2σ2

2 , (7.1)

with

W = XT
∗ (In −X1(X

T
1 X1)

−1X1)X∗ , (7.2)

where the algebraic arrangements may be confirmed upon equating the expectation of the

corresponding quadratic form in Y when Y|θ2, σ
2
2 ∼ N [X2θ2, σ

2
2] with the expectation ω+2ψ

of the non-central chi-squared distribution. The preceding partitioning of θ2 and X2 gives,

after some algebraic cancellation, the required result.

Assume further that, given σ2
2 and M2, θ2 possesses the mixing distribution

θ2|σ2
2,M2 ∼ N [µ, ρσ2

2(X
T
2 X2)

−1] , (7.3)

for some specified ρ, where the last ω elements of µ are zero. Then

θ∗|σ2
2,M2 ∼ N [0ω, ρσ

2
2W

−1] , (7.4)

where 0ω is the ω×1 vector of zeros and W in (7.2) is by implication non-singular. Therefore

2ψ/ρ possesses, given σ2
2 and M2, a central χ2

ω distribution. Standard moment generating
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function arguments based upon the well-known Poisson mixture representation of the non-

central chi-squared distribution may be used to show that given σ2
2 and M2, but uncondi-

tionally on θ2, (S2
1 − S2

2)/(1 + ρ)σ2
2, follows a central χ2

ω distribution. Given σ2
2 and M2,

S2
2/σ

2
2 follows a central χ2

ν2
distribution, so that the random analogue F̃ of (6.2) satisfies

(1 + ρ)−1F̃ |σ2
2,M2 ∼ F ω

ν2
, (7.5)

a central F -distribution. The preceding derivation simplifies the development by Johnson

(2005, section 3), who then implicitly employs the point estimate ρ̂ = max(F − 1, 0) for ρ in

his estimated dimensionality-reduced Bayes factor. As ρ̂ maximizes the marginal likelihood

curve of ρ, given F and M2, no account is taken of the dispersion of this curve. This

dispersion can be substantial for small to moderate ω, even when ν2 is large.

Johnson’s estimated weight of evidence implicitly equals unity for all F ≤ 1, thus placing

equal emphasis on M1 and M2 in situations where M1 should be preferred. As ρ̂ is not

marginally consistent given M2 for ρ, as ν2 → ∞ with ω fixed, it is difficult to interpret

his estimated weight of evidence when F > 1. In particular, values of the estimated crite-

rion which appear to substantively favor M2 may instead be inconclusive. However, as the

unestimated weight of evidence for M2 against M1 is proportional as a function of ρ to the

marginal likelihood of ρ given F and M2, the unestimated criterion may be valuably plotted

against ρ, with very useful potential interpretations. As ν2 →∞, with ω fixed, this criterion

approaches (1+ρ)−
1
2
ω exp{1

2
ωρF/(1+ρ)}. Similarly appealing criteria are available in many

other situations, if an appropriate test statistic, that is at least approximately ancillary given

M1 can be constructed.

As another consequence of (7.5), and paralleling the developments in section 4, we can

set ρ = ξ2/medω and consider the average Type II success probabilities

κ(ξ) = 1− F ω
ν2

[Fo/{1 + (ξ2/medω)}] , (7.6)

for critical values Fo of F . The minimum and average success probabilities in (4.3) and (4.4)

may now be calculated with this choice of κ(ξ) and upon replacing γ∗ by the Type I success

probability in (6.6). Under the assumption in (7.3) these calculations do not depend upon

the choice of X2. The lambda-optimality criterion described in Definition 5 of section 4 may

also be employed.

In Figs 5 and 6 the MINSP and AV ESP curves are contrasted when n = 100, p1 =

7, and p2 = 8 and for (a) the MIC preference critical value To = 1.088 (b) the omega-

preference critical value To = 1.253 and (c) the tau-dominance critical value To = 6.647

The slightly superior Bayes-frequency properties for omega-preference, when compared with
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Figure 5: MINSP (n = 100, p1 = 7, p2 = 8)
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Figure 6: AVESP (n = 100, p1 = 7, p2 = 8)

MIC preference and as reported in section 4, extend to the current situation. As illustrated

by the intersection points in Table 5, this conclusion is also true for general p1 and p2 unless

n is too small. Similar Bayes-frequency calculations may be completed for the exact nested

situations described in section 2. For the p1 and p2 of section 2 just apply the current

numerical procedures with n very large, and with our current p1 and p2 reduced to p1 − 1

and p2 − 1. For the special case described in section 3, set the current p1 and p2 equal to

zero and n− 1 respectively.

In Fig 7 the values of qsp, α2, bsp, γ
∗ and λ are plotted against To in our current situation

when n = 100, p1 = 7 and p2 = 8. While λ no longer calibrates well with qsp and α2, this

Bayes-frequency refutation criterion compromises between α2 and γ∗. Graphs of AV ESP
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Table 5: Intersection Points of Success Probability Curves for Selected p1 and p2

n p1 p2 (1) (2) (3) (4)

20 7 8 (1.644,0.676) (4.631,0.719) (0.405,0.536) (2.493,0.746)
60 7 8 (1.633,0.681) (4.596,0.716) (0.296,0.521) (2.437,0.745)

100 7 8 (1.631,0.682) (4.594,0.716) (0.279,0.519) (2.435,0.745)
100 5 9 (1.393,0.591) (2.994,0.644) (0.632,0.530) (2.498,0.730)
100 6 7 (1.640,0.681) (4.508,0.718) (0.289,0.520) (2.337,0.741)
100 6 8 (1.412,0.630) (3.337,0.673) (0.442,0.524) (2.463,0.742)
100 5 6 (1.651,0.681) (4.414,0.721) (0.300,0.522) (2.228,0.737)
100 5 7 (1.424,0.630) (3.268,0.677) (0.459,0.526) (2.374,0.738)
100 5 8 (1.394,0.606) (3.059,0.656) (0.558,0.528) (2.443,0.734)
100 5 9 (1.393,0.591) (2.994,0.644) (0.632,0.530) (2.498,0.730)

N.B. The footnotes to Table 3 also apply to Table 5. The selected p1 and
p2 values are relevant to the medical study in section 8.

and MINSP may be calculated and contrasted by the user for specified out-off values for

the various refutation criteria, as now illustrated.

The BIC model selection criterion, namely a (p2− p1) log n critical value for T , is shown

by Schwarz (1978), in generalizable special cases, to result from an asymptotic form (n→∞)

of the logarithms of ordinary Bayes factors. However, BIC possesses unconvincing Bayes-

frequency properties, when n is large enough, for any fixed p1 and p2, when compared with

our Bayesian criteria, based upon the U curve. These properties result from the stabilization

as n becomes large and for any fixed T = To of the U curve and the corresponding AV ESP

and MINSP curves.

In contrast the BIC critical value becomes arbitrarily large. For example, when p1 = 2

p2 = 6 and n = 10, 000, the BIC critical value of To = 36.841 compares with the α2 = 0.99

critical value of To = 16.115. The α2 = 0.99 criterion yields superior AV ESP whenever

ξ < 26.59 and AV ESP < 0.9982, and superiorMINSP whenever ξ < 28.14 andMINSP <

0.9971. Such computations arguably resolve Lindley’s paradox, by decisively deciding the

case against ordinary Bayes factors.

The posterior probability β2 in (6.5) provides an alternative refutation criterion, for

any specified choice of β1. In particular, when β1 = 0.75, β2 = α∗2 denotes the posterior

probability, given M2, that ψ2 exceeds the first posterior quantile of ψ1, given M1. When
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Figure 7: Bayesian and Bayes-Frequency Criteria (n = 100, p1 = 7, p2 = 8, (a) λ (b) qsp (c) α2 (d) bsp (e)
γ∗)

α∗2 ≥ 0.75, comparisons of α∗2 with the typically somewhat smaller Bayes-frequency criterion

λ and with γ∗ (see Table 7 of section 8) add credence to both α∗2 and λ as refutation criteria.

8. MEDICAL EXAMPLE

Feher et al. (1988), in a study of ongoing clinical relevance, consider the dependence of

high-density lipoprotein (HDL) on eight explanatory variables, for a sample of n = 71

hypertensive diabetic patients. The HDL level is well-known to be negatively associated

with blood pressure, high cholesterol and a risk of heart disease. The eight explanatory

variables considered were:

B: the presence (+1) or absence (-1) of a beta-blocker,

D: consumption (+1) or non-consumption (-1) of alcohol,

S: smoking (+1) or non-smoking (-1),

A: age, W : weight, T : triglyceride level,

C: C-peptide level, and G: blood glucose level.

Logarithms were taken of each of the five continuous explanatory variables A, W , T ,

C, and G, before rescaling each variable, by subtracting the appropriate sample mean, and

dividing by the corresponding sample standard deviation. Numerous regression models were

considered for Y = logHDL, each including a constant term K and an error term represented

symbolically by E. With A,W, T, C, and G now denoting the transformed variables, partic-

ular attention was paid to seventeen models, all special cases of the formulation introduced

in section 5, and represented symbolically (+ denotes inclusion), as follows
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M1: Y = K +B + T + E, M2: Y = K +B + T + S + A+ E,

M3: Y = M2 +D +W + C +G, M4: Y = M2 +G,

M5: Y = M2 +BS, M6: Y = M2 + SA,

M7: Y = M2 + SA+BS, M8: Y = M2 + SA+BS + TA,

M9: Y = M8 + TS, M10: Y = M9 +BT ,

M11: Y = M10 +BA, M12: Y = M8 + SAT ,

M13: Y = M8 + SAB, M14: Y = M8 + SAB + SAT ,

M15: Y = M14 + SBT , M16: Y = M15 + ABT , and

M17: Y = M7 + SAB.

For example, M17 complements model M7 with the triple interaction term SAB, or

equivalently the four factor main effects model M2 with two double interaction terms SA

and BS, together with SAB. The choice of this set of models was partly motivated by

consideration of standard regression output, and partly by the need to detect interaction

effects of potential clinical relevance. The full eight factor main effects model M3 yields

respective (classical or Bayesian) two-sided p-values of 0.000, 0.000, 0.001, 0.009,, 0.523,

0.723, 0.747, and 0.815 for the presence of the T , A, S, G, D, E, and W main effects terms.

This strongly suggests reduction of M3 to M2, as estimated by

Y = 1.900− 0.449T − 0.245A− 0.304B − 0.179S + E , (8.1)

with residual mean squared error 0.329.

The estimated coefficients in (8.1) are the corresponding posterior means, under the prior

assumptions of section 5 and the reciprocal of the residual mean squared error is the posterior

mean of the reciprocal of the residual variance. It is unnecessary to add squared terms for

the measurement variables T and A as this complication would yield p-values 0.555 and 0.891

for the corresponding coefficients. The full double interaction model M11 that incorporates

the four significant factors in M2 yields respective p-values 0.044, 0.194, 0.240, 0.384, 0.414,

and 0.824 for the presence of the interaction terms SA, BS, TA, TS, BT , and TA. This

indicates the plausibility of M6, which compounds M2 with an interaction term SA that

possesses estimated coefficient -0.155.

The preliminary model scan proposed in the last paragraph of section 3 is reported

in Table 6, together with the residual sums of squares R2
i (see fourth column), for M1 to

M17. Simple model preference, as suggested by the smallest values of both the DIC∗i and

QIC2i = −2MICi, indicates the choice M8. This three-fold double interaction model is

MIC-preferred to any triple interaction model containing just multiples of T , A, B, and S,

24



Table 6: Preliminary Model Scan

Mi νi pi R2
i DIC∗

i AIC∗
i QIC1i QIC2i QIC3i

M1 68 3 0.514 122.65 127.57 121.54 123.02 125.10
M2 66 5 0.631 105.18 111.98 103.58 105.56 108.16
M3 62 9 0.636 108.65 119.01 106.26 109.07 112.52
M4 65 6 0.634 105.77 113.48 103.96 106.16 108.99
M5 65 6 0.641 104.23 111.95 102.42 104.62 107.45
M6 65 6 0.653 101.81 109.53 100.00 102.20 105.03
M7 64 7 0.665 100.40 109.02 98.39 100.80 103.85
M8 63 8 0.675 99.51 109.01 97.31 99.92 103.18
M9 62 9 0.679 99.77 110.13 97.38 100.19 103.65
M10 61 10 0.683 100.03 111.23 97.46 100.46 104.11
M11 60 11 0.683 101.14 113.17 98.41 101.59 105.43
M12 62 9 0.679 99.71 110.07 97.32 100.13 103.59
M13 62 9 0.677 100.08 110.44 97.69 100.50 103.95
M14 61 10 0.684 99.78 110.98 97.21 100.21 103.86
M15 60 11 0.686 100.58 112.61 97.85 101.03 104.87
M16 59 12 0.686 101.73 114.57 98.82 102.18 106.21
M17 63 8 0.671 100.36 109.85 98.15 100.77 104.02

for example M12 to M17. Moreover QIC38 < QIC12, so that M8 tau-dominates its main

effects sub-model M2. The MIC-preferred choice M8 may be estimated by

Y = 1.900−0.479T −0.167A−0.324B−0.167S−0.155SA−0.114BS−0.105TA+E, (8.2)

with residual mean squared error 0.238.

The p-value for the presence of the four main effects and three interaction terms in M8

are respectively 0.000, 0.000, 0.000, 0.016, 0.0419, 0.101, and 0.184. The inclusion of TA is

further open to question as M8 is only marginally MIC and DIC preferred to M7. However,

M8 is also omega-preferred to any of its sub-models, as illustrated below, thus more strongly

supporting the MIC and DIC choice. While this does not necessarily imply that the BS

and TA interactions are of clinical significance, they should certainly be considered in any

further study, together with the more statistically significant SA interaction.

Ten nested models comparisons are analyzed in detail in Table 7. The entries in the fifth

column describe the values α0 of the posterior probability β2 in (6.5) when β1 = 0, while the
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Table 7: Detailed Nested Model Comparisons

Comparison p1 p2 T F α0 qsp α2 α∗2 bsp λ γ∗ msp

M2 vs M3 5 9 0.968 0.213 0.000 0.331 0.192 0.420 0.000 0.500 0.070 0.644
M7 vs M8 7 8 2.008 1.807 0.007 0.542 0.578 0.788 0.997 0.653 0.816 0.716
M5 vs M7 6 7 4.927 4.599 0.206 0.688 0.795 0.908 1.000 0.891 0.964 0.718
M5 vs M8 6 8 6.935 3.232 0.310 0.719 0.825 0.919 1.000 0.904 0.954 0.673
M6 vs M7 6 7 2.508 2.301 0.032 0.572 0.628 0.816 1.000 0.720 0.866 0.718
M6 vs M8 6 8 4.515 2.068 0.104 0.611 0.686 0.843 1.000 0.772 0.865 0.673
M2 vs M6 5 6 4.450 4.205 0.247 0.682 0.784 0.900 1.000 0.872 0.956 0.721
M2 vs M7 5 7 6.958 3.295 0.416 0.738 0.841 0.925 1.000 0.908 0.957 0.677
M2 vs M8 5 8 8.966 2.827 0.505 0.766 0.863 0.934 1.000 0.918 0.954 0.656
M7 vs M17 7 8 1.164 1.041 0.001 0.502 0.503 0.740 0.546 0.510 0.688 0.716

N.B. The entries to the second and the third columns now denote the respective numbers of
linear parameters for the models in that comparison.

entries α∗2 in the eighth column (β1 = 0.75) were introduced in the last paragraph of section

7. The values of msp in the final column do not depend on the observed values of F . Some

Bayes-frequency calculations relevant to these comparisons were summarized in Figs 5, 6,

and 7, and Table 5.

Consider firstly the comparison of M7 and M8. As γ∗ = 0.816 > msp = 0.716, M8

is omega-preferred to M7. Similarly M8 is omega-preferred to its submodels M2, M5, and

M6. Any more complex model such as M13 which contains M8 but is not MIC-preferred

to M8, cannot be omega-preferred to M8. As M17 is MIC preferred to M7, α2 = 0.503

must exceed 0.5. However, as γ∗ = 0.688 < msp = 0.716, M17 is not omega-preferred to

M7, It is nevertheless important to directly contrast the non-nested models M8 and M17 in

detail. While frequency criteria are unavailable, treating M17 as the first model and M8 as

the second model gives T = 0.844, α0 = 0.000, qsp = 0.539, α2 = 0.575, and α∗2 = 0.797.

Switching the order of the models gives α0 = 0.000, qsp = 0.461, α2 = 0.420, and α∗2 = 0.696.

Model M8 is noticeably preferable.

Quite different conclusions should be drawn from refutation inference (even though M8

yields the smallest AIC∗ value in Table 6). For example, none of the submodels M5, M6,

and M7 are tau-dominated by M8, and each yields a qsp value substantially smaller than
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0.75. The key comparisons concern M2 with M7 and M2 with M8. The respective γ∗ values

0.957 and 0.954 suggest refutation of M2 at the 5% level. However the α∗2 values 0.925 and

0.934 correspond to slightly unconvincing points when β1 = 0.75 on the respective U -curves.

With also α0 = 0.416, qsp = 0.738 < 0.75, and α2 = 0.841, the U curve for the M2 versus

M7 comparison, will not be remarkably well directed towards the upper left (β1, β2) = (0, 1)

vertex of QU . With α0 = 0.505, qsp = 0.766, and α2 = 0.863 for the M2 versus M8

comparison, the U curve will be only slightly more directed towards this vertex. The Bayesian

inferences suggest that there is insufficient information in the current data to justify refuting

M2 against either M7 or M8 The Bayesian case for refuting M2 against the SA interaction

model M6 is even less convincing. The values of λ for the comparisons of M2 with M6, M7,

and M8 contrast with the γ∗, and more clearly distinguish between these three alternative

models, in a manner consistent with the fully Bayesian inferences. After consideration of a

number of further models, we conclude that the four factor main effects model M2, estimated

in (8.1) is an appropriate parameter-parsimonious model choice. Residual analyses would

further validate and contrast the models in (8.1) and (8.2).

9. FUTURE WORK

For any specified value of β1 sufficiently exceeding 0.5 the Bayesian refutation criterion

in (6.5) matches the frequency probability γ∗ in (6.5) whenever

τp2{F ω
ν2

(F0)} = n log{1 + δF0}+ τp1(β1) . (9.1)

If F0 satisfies (9.1), then F0 provides a possible critical value for refutation inference,

with Type I frequency success probability msp∗ = F ω
ν2

(F0) depending upon p1 and p2. The

solution for F0 may then be interpreted as uniquely satisfying the property that M1 should

be refuted in favor of M2 if and only if both γ∗ and β2 exceed msp∗. This property may

be clarified upon comparing the graphs of γ∗ and β2 against F0. When β1 = 0.75 the ten

model comparisons in Table 7 yield the respective msp∗ values 0.999, 0.964, 0.966, 0.988,

0.966, 0.988, 0.969, 0.990, 0.997, and 0.964. Very detailed Bayes-frequency investigations

of this possibility are however required. Possible extensions of the close Bayes-frequency

calibrations in Table 4 to more general situations, by comparisons of various Bayes profiles

and generalizations of λ, can also be investigated.

When M1 and M2 are non-nested, tau-dominance, and specified cut-off values of qsp, the

α profile, and other points on the U -boundary are open to scrutiny via large-scale simulations

of y given M1 and M2, for selected choices of the parameter values. Given observed data, the

frequency properties may be estimated using bootstrap techniques. The authors are currently
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investigating Bayesian inferences for the comparison of linear and non-linear random effects

models with their fixed effects counterparts, and this work will be reported elsewhere. The

investigation of zero associations in contingency tables, the semi-parametric smoothing of

regression functions, and the identification of wavelets, provide just a few further examples

of application. With the possible exception of the matching procedures, all of the currently

suggested ideas may be applied exactly to most situations, for example using MCMC.

In section 7 we showed that some standard measures of evidence, namely the logarithms

of ordinary Bayes factors, can possess quite disappointing limiting Bayes-frequency proper-

ties, for example when contrasted with our recommended Bayesian criteria. This is a key

conclusion with broad social implications. These aspects should also be emphasised by other

authors and applied workers.
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