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Two applications are described of a hierarchical model that can express uncertainty regard-

ing a pre-specified monotonicity hypothesis for binomial probabilities. The results relate to

time series with possibly monotonic success rates, isotonic regression, and the evaluation

of performance indicators. The model can alternatively be interpreted as a random effects

over-dispersion formulation for beta-binomial observations, within which the population pro-

portions definitely satisfy a monotonicity specification. Practical ways of choosing the prior

parameters for a Bayesian analysis are recommended. The primary application relates to a

study of early hematopoiesis, and revisits a time series of proportions of masked progeni-

tor cells from the bone marrow of a hybrid safari cat. The data for this cat are shown to

be reasonably consistent with an assumption of strictly decreasing population proportions.

The experimental outcomes for the other cats in the study are reviewed. An introductory

application results from a Veterans’ Administration hospital quality monitor, and concerns

the failure to return rates for psychiatric patients attending substance abuse clinics. While

smoothed performance indicators are devised, estimated standard errors of the corresponding

sample proportions, which measure their extra-binomial sampling variation, are also calcu-

lated.
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1. INTRODUCTION

When investigating m population proportions θ1, θ2, . . . , θm it is sometimes appropriate to

consider monotonicity constraints

θ1 ≤ θ2 ≤ . . . ≤ θm , (1.1)

based upon prior reasoning. The θi might for example represent the true success rates for

a treatment, at consecutive time periods, where the success rates are thought to be non-

decreasing in time. They may alternatively denote the success rates for m multi-centered

trials, where the centers have been ordered according to preliminary performance indicators.

More generally, we may have an isotonic regression situation where the θi are thought to

possess the same ordering as an increasing covariate, e.g., dose level.

A major theme of this paper lies in the argument that, while there may be some prior

justification for the monotonicity constraints (1.1), the previous information may be in-

sufficient to assume that (1.1) definitely holds. In section 3, hierarchical assumptions are

introduced which, under binomial sampling assumptions, relax the investigator’s prior belief

in (1.1), thus permitting the observed data to refute (1.1). The probability model described

may alternatively be interpreted as a random effects model for beta-binomial observations.

The embedded extra-binomial variation then yields potentially quite different conclusions

regarding the proposed monotonicity of the population proportions.

2. TWO DATA SETS

2.1 The Veterans’ Administration hospital quality monitor data

We analyze part of a data set modeled by West and Aguilar (1997), Aguilar and West

(1998), West et al. (1998), and Burgess et al. (2000), using Bayesian multiple time series. The

subsample considered here provides information from the years 1992 and 1993 for m = 159

hospitals in the Veterans’ Administration (VA) system. The 1993 data provide our dependent

variables, and the 1992 data are used to calculate a set of explanatory variables.

Let yi denote the number of individuals who failed to return for an outpatient visit within

30 days of discharge during 1993 out of the total number of annual discharges at the ith

hospital, for i = 1, 2, . . . , m. Then pi = yi/ni can be regarded as a performance indicator or

measure of (lack of) quality for the ith hospital. The sample sizes range from 5 to 1142 with

an average of n̄ = 324.7. Let xi denote the corresponding proportion for the year 1992. For
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our first analysis, we attach our indices after reordering the hospitals according to increasing

values x1 < x2 < · · · < xm. The rank ordering of the performance indicators for 1992 is thus

taken into account when considering the rank ordering for 1993. Assumptions of monotonic

increasing population proportions for 1993, under binomial or beta-binomial assumptions for

the yi, will be investigated in section 9.

(Figure 1 is about here)

The association between the raw performance indicators is described by the entries to

the scatterplot in Figure 1, which plot the pi against the xi. There is some overall increasing

trend, but with considerable random scatter. The hospitals’ raw performance indicators for

1992 do not provide good predictions of the performances for 1993. The solid plot describes a

piecewise linear isotonic regression, as defined in sections 4.3 and 9, and justified under beta-

binomial sampling assumptions. The abscissa of this plot provide smoothed performance

indicators for 1993 which are consistent with the rank ordering for 1992. The dotted plots

add or subtract estimated standard errors of the 1993 sample proportions, which account

for substantial extra-binomial variation. The magnitudes of the estimated standard errors

provide guidance regarding the usefulness of the fitted performance indicators, for predictive

rather than descriptive purposes. Further discussion is provided in section 9.

(Figure 2 is about here)

The preceding explanatory variables may be replaced by the VA’s diagnostic related

group (DRG) predictions that, for each hospital in each year, are supposed to provide pre-

dictions of the corresponding pi. The DRG predictions for 1993 do not depend upon the

sample proportions for years prior to 1993. In Figure 2, the pi are plotted against the DRG

predictions. The performances of these predictions and the previous raw performance indi-

cators are comparable. As the labeling of the x-axis of Figure 2 is quite compressed, when

compared with Figure 1, the fitted isotonic graph, while similar in shape, represents a much

steeper regression. The estimated standard errors of the corresponding sample proportions

are however comparable.

In other analyses, not reported here, the explanatory variables were replaced by equally

weighted or unequally weighted combinations of appropriately normalized proportions for

1992 and DRG predictions for 1993. Quite surprisingly, none of these combinations yielded

4



substantive modifications to the shape of the isotonic regression graph, and the estimated

standard errors were at best only marginally reduced. The inclusion of multiplicative inter-

action terms failed to improve the predictive performance.

2.2 A Time Series for a Safari Cat

The data in Table 1 comprise an important subset of the early hematopoiesis data ana-

lyzed by Newton et al. (1995) using a finite Markov Chain model with a formulation based

upon biomedical considerations and relating to earlier work by Guttorp et al. (1990) and

Abkowitz et al. (1990, 1993). The bone marrow of humans and other vertebrates contains a

relatively small number of remarkable cells, the hematopoiesis stem cells. Hematopoiesis is

the complex dynamic process that maintains this population; see Brecher et al. (1986), Golde

(1991), and Lemischka (1992). A thorough discussion of early hematopoiesis is provided by

Newton et al. They refer to a standard theory where the entire supply of stem cells is actively

dividing, and Kay’s (1965) theory of clonal succession, which hypothesizes that most stem

cells are inactive, and that at any time a small proportion are proliferating. A variety of

alternative sets of biomedical assumptions are available. The studies are of current clinical

relevance to cancer treatments, bone marrow transplantation and gene transfer methods.

See also Abkowitz et al. (1998, 2002).

(Table 1 is about here)

Newton et al. describe experiments by Janis Abkowitz and her colleagues at the University

of Washington, e.g., Abkowitz et al. (1988), where numbers of domestic type cells in samples

of progenitor cells are recorded at different sample times for a number of cats. The second

column of Table 1 records the m = 18 unequally spaced sampling times (ti) for their cat

with id 40665. This is one of the six cats considered by Newton et al. who were subjected

to a bone marrow transplantation treatment. The third and fourth columns record the

corresponding observed numbers of domestic type cells yi and the number of progenitor cells

ni. The observed proportions pi and associated estimated standard errors si are described

in the fifth and sixth columns.

Let θi denote the proportion of domestic-type cells in the full progenitor pool at time ti,

and assume that yi is the numerical realization of a random variable Yi. In their section 4.2,

Newton et al. show that, subject to their modeling specifications, and with the proportion of

domestic-type cells in a stem cell compartment assumed constant over time, it is reasonable
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to take the counts Yi to be conditionally independent and binomially distributed with Yi|θi ∼
BIN(θi, ni), for i = 1, 2, . . . , 18. Our own, now monotonic decreasing, hypothesis θ1 ≥ θ2 ≥
· · · ≥ θ18 may or may not concur with any particular specialized biomedical theory for early

hematopoiesis. However the analyses of sections 6, 7, and 8 will suggest that, even under

strict binomial sampling assumptions, our hypothesis should not be entirely refuted. A

specially formulated tail probability of about 14% is reported. Any reasonable relaxation

of the binomial assumptions would probably lessen the evidence against the hypothesis.

In their section 8.2, Newton et al. discuss modeling conditions under which extra-binomial

sampling assumptions are more appropriate. In order to justify a binomial model by random

sampling rather than theoretical assumption, we would firstly seek to fully define a reference

population or sampling frame. It would seem necessary to effectively distinguish all cells in

the full progenitor pool. Newton et al. describe the actual experimental sampling mechanism

in their section 2.

The entries in the last column of Table 1 provide a preliminary data analysis for cat

40665. These two sample binomial test statistics may be used to test the hypotheses that

θi > θi+1, for i = 1, 2, . . . , 17, on an individual basis. For example, the high positive value

z16 = 3.178 attaches apparently strong statistical significance in favor of the conclusion

that θ16 > θ17. The only apparently significant evidence against our monotonic decreasing

hypothesis is provided by the negative values z15 = −1.786 and z5 = −2.635, which relate

to the high values p16 = 0.482 and p6 = 0.789 for the subsequent sample proportions.

Our main analysis for cat 40665 will however suggest that the population proportions may

well be noticeably strictly decreasing, under extra-binomial sampling assumptions. Of the

other cats in the treatment group, cats 40005a, 40006, and 40823 also yielded experimental

outcomes consistent with this property. The data for cat 40004 do not appear to possess any

special features. The fragmented data for cat 40005b require further biomedical explanation.

It is difficult to fairly compare the treatment and control groups, since much of the data for

the five control cats were recorded at substantially higher time points. However, there is

some suggestion of slightly decreasing population proportions for cats 63458 and 63133, and

negligible evidence for cats 63122, 63144, and 65044. Any applied appraisal of the entire

data set considered by Newton et al. might quite reasonably suggest that the data do not

contain the type of information which is likely to support or distinguish between extremely

sophisticated hypotheses or clinical interpretations. Apparent features in the data may
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instead be explainable by overdispersion, perhaps of an even more complex nature than

indicated by a beta-binomial sampling model (see Hsu et al. 1991). The bootstrap analysis

by Newton et al. (section 6) should be considered in this context.

3. A HIERARCHICAL MODEL

A four stage probability model with the following first two stages is employed:

Stage 1: Observations Y1, Y2, . . . , Ym are independent and binomially distributed, given

θ1, θ2, . . . , θm, with Yi|θi ∼ BIN(θi, ni), for i = 1, 2, . . . , m.

Stage 2: The θi are independent and beta distributed, given an unknown parameter γ

and respective conditional means ξi where, with the standard parameterization, θi|γ, ξi ∼
Beta{γξi, γ(1− ξi)}, for i = 1, 2, . . . , m.

With the further assumption that the unknown ξi satisfy the monotonicity specification

ξ1 ≤ ξ2 ≤ · · · ≤ ξm , (3.1)

the preceding two stages can be interpreted in either of the following two ways:

(A) Let Stage 1 represent the sampling distribution of the Yi and Stage 2 describe the first

stage of a hierarchical prior distribution for the population proportions θi (further stages for γ

and the conditional means ξi will be added below). In this case Stage 2 represents uncertainty

in the belief that the monotonicity hypothesis (1.1) holds for the θi, thus extending an idea

introduced by O’Hagan and Leonard (1976) in a single parameter normal situation. For

given ξi and γ, the parameter θi can be said to possess a beta distribution with mean ξi

and sample size γ, where this (prior) sample size measures the degree of belief in (1.1). As

γ → ∞ the monotonicity constraints are completely specified for the θi. A small value of

γ represents substantial uncertainty in this hypothesis. Our formulation does not however

require the specification of a definite value for γ, since the current data will typically provide

considerable information regarding γ.

(B) The two stages may alternatively be combined. Unconditionally on θi, Yi possesses a

beta-binomial distribution, labeled by its parameters ξi and γ, and sample size ni. The

probability mass function of Yi, given ξi and γ, is

p(Yi = yi|ξi, γ) = niCyi
l∗i (ξi, γ) , (3.2)

for yi = 0, 1, . . . , ni, with niCyi
= ni!/yi!(ni − yi)! and

l∗i (ξi, γ) =
B{γξi + yi, γ(1− ξi) + ni − yi}

B{γξi, γ(1− ξi)} , (3.3)
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where B(a0, a1) = Γ(a0 + a1)/Γ(a0)Γ(a1) is the complete beta function with arguments a0

and a1. With the ξi now denoting our population proportions, we have a conditionally

independent beta-binomial sampling model, within which the monotonicity specification in

(3.1) is definitely satisfied as a modeling assumption. The plausibility of this specification

may of course be further investigated.

In either case, the conditional distributions of the θi, given γ, the ξi and the observed

values yi of the Yi are, for i = 1, 2, . . . , m, independently beta with respective (posterior)

sample sizes ni + γ and means

θ∗i = ρipi + (1− ρi)ξi , (3.4)

where pi = yi/ni and

ρi = ρi(γ) =
ni

ni + γ
. (3.5)

In case (A), (3.4) describes the conditional posterior mean of θi. The θ∗i compromise

between the ξi satisfying the monotonicity specification (3.1), and the pi, which can be

taken to represent a general alternative hypothesis. Any data-based estimate of the average

shrinkage proportion

ρ̄ = m−1
m∑

i=1

ρi(γ) (3.6)

can be interpreted as an overall measure, on a unit scale, of the evidence against the mono-

tonicity hypothesis (1.1), and in favor of a general alternative hypothesis. The weighted mod-

ifications ρ̃ =
∑

niρi/N and ρ̂ =
∑

(ni+γ)ρi/
∑

(ni+γ) = N/(N+γ), with N =
∑

ni are more

sensitive to values of the larger ni. The complicated refinement ρ† =
∑

ρi(pi−ξi)
2/

∑
(pi−ξi)

2

may be justified by reference to a quadratic loss function.

Under the beta-binomial interpretation (B), the Pi = Yi/ni are unbiased estimators of

the ξi with respective variances n−1
i Diξi(1 − ξi), where Di = (ni + γ)/(1 + γ) is the ith

over-dispersion factor. These estimators do not however take account of (3.1). Moreover,

not all of the m+1 parameters γ and ξ1, ξ2, . . . , ξm are identifiable from the data, as there are

just m observations. We consequently extend our conditionally independent beta-binomial

model, by introducing the following random effects assumption:

Stage 3: Given b0 = λη and b1 = λ(1 − η), the ξi possess the probability structure of

the increasing order statistics based upon a random sample of size m from a Beta(b0, b1)

distribution i.e. a beta distribution with mean η and sample size λ.
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Our random effects beta-binomial sampling model for case (B) possesses just three pa-

rameters γ, λ, and η. When m is moderate to large, it is therefore possible to draw sensible

proper Bayes inferences regarding these three identifiable parameters, and also for the ξi.

Posterior estimates for γ and the ξi can thereby be imputed for the parameters of the pre-

ceding conditionally independent beta-binomial model. For computational convenience, we

initially take the distribution of the parameters γ and λ in the prior assessment to be dis-

crete. The prior distribution for the three parameters of our random effects model is selected

as follows:

Stage 4: γ, λ, and η are independent, and η ∼ Beta(d0, d1). The distribution of γ as-

signs probabilities π1, π2, . . . , πk to the points g1, g2, . . . , gk, and the distribution of λ assigns

probabilities δ1, δ2, . . . , δl to the points h1, h2, . . . , hl.

The assumption of prior independence of γ and λ can be relaxed by taking these param-

eters to possess a general discrete joint distribution on a k × l dimensional grid. Practical

choices of the prior parameters will be discussed in section 5, and, given the sensitivity anal-

ysis of section 8, further prior specification does not present quite as many barriers as one

might imagine. In a special case it will just be necessary to choose prior estimates n0 and

λ0 for γ and λ, and, with d0 = d1 = 1, to then consider the sensitivity of the posterior infer-

ences to the choices of n0, λ0, k, and l. Baseline values for n0 and λ0 will be recommended.

Large values for k and l will yield close approximations to inferences under an interesting

thick-tailed continuous prior distribution, which is effectively assumed.

In case (A), Stages 2, 3, and 4 provide a hierarchical prior distribution for the θi. Stage

3 permits input from the data regarding the values of the Stage 2 parameters ξi. Stage

4 facilitates input from the data regarding the value of γ, and the Stage 3 parameters

b0 = λη and b1 = λ(1 − η). Related hierarchical models for binomial probabilities, without

the constraints in (3.1), provide alternatives to the binomial logit/normal prior or normal

random effects developments by Leonard (1972, 1976), Warn et al. (2002), and many others.

4. POSTERIOR CONSIDERATIONS

4.1 Posterior Inferences

In case (A) of section 3 the marginal posterior distribution of θi averages a beta distribu-

tion with sample size ni + γ and mean θ∗i satisfying (3.4), with respect to the unconditional

posterior distribution of γ and the ξi. All posterior quantities of interest for both cases

(A) and (B) may be calculated, subject to a minor approximation, via standard Metropolis
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algorithm/MCMC procedures. See Appendix 2. Unconditional posterior densities can be

computed along with the means and standard deviations reported in the current paper.

For illustrative purposes only, note that the posterior distribution of the ξi, given γ, λ, and

η, may be roughly approximated by taking the ξi to possess independent beta distributions,

with respective sample sizes D−1
i ni + λ and means

ξ∗i =
D−1

i nipi + λη

D−1
i ni + λ

, (4.1)

where Di = (ni + γ)/(1 + γ), but then constraining these distributions to the region defined

by (3.1). The expressions in (4.1) constrain the pi towards a common unknown value η. The

posterior means of the ξi are furthermore substantially influenced by the constraints in (3.1).

As well as taking (3.1) into account, the unconditional posterior inferences create a partial

pooling process which roughly speaking has the effect of flattening the ξi towards a pooled

estimate for η.

When d0 = d1 = 1, η is estimated by a slightly adjusted center of location of the pi. For

example, the first posterior analysis of section 9, leading to the isotonic regression graph in

Figure 1, yielded a posterior mean of 0.439 for η. This compares with the overall sample

proportion p∗ = 0.425, and the average sample proportion p̄ = 0.444, and accounts, via the

shrinkages of the ξi, for a flattening of the isotonic regression graph. Pooled information

from across the hospitals is thus incorporated. When judging the plausibility of a monotonic

relationship, via the residual analysis of sections 6 and 9, it is important to realize that our re-

gression graph meaningfully flattens steeper monotonic graphs which may better fit the data.

4.2 Two Useful Approximations and a Parameter of Interest

In Appendix 1, an approximation to the conditional distribution of the ξi, given the θi,

γ, η, and λ, under Stages 2 and 3 of our probability model is justified unless γ, b0 = λη, or

b1 = λ(1 − η) is small. The approximation constrains m independent beta distributions to

the region (3.1). These distributions may, for i = 1, 2, . . . , m, be described as follows:

ξi|θi, γ, η, λ ∼ Beta{λ̃ξ̃i, λ̃(1− ξ̃i)} , (4.2)

where

ξ̃i = ζθi + (1− ζ)η , (4.3)

and

λ̃ = γ + λ + 1 , (4.4)
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with

ζ =
γ + 1

γ + λ + 1
. (4.5)

This development highlights ζ in (4.5) as an interesting bounded function of γ and λ. As ζ

approaches zero, the ξ̃i in (4.3) approach the common unknown value η. While the shrinkage

proportions ρi in (3.5) relate to shrinkages of the θi towards the ordered ξi, the proportion

ζ controls the shrinkages of the ξ̃i towards a common value η. Our preceding approximate

conditional distribution for the ξi provides a key ingredient of the posterior computational

procedures described in Appendix 2, and will be made more exact by acceptance sampling.

The exact joint distribution of the ξi, given the θi, γ, η, and λ, initially takes the ξi to be

independent, with respective densities

π̃(ξi) ∝ ξηλ−1
i (1− ξi)

η(1−λ)−1θγξi
i (1− θi)

γ(1−ξi)

B{γξi, γ(1− ξi)} , (4.6)

for 0 < ξi < 1 and i = 1, 2, . . . , m, but then constrains the joint distribution of the ξi to the

region (3.1). The acceptance sampling methodology refers to (4.6) without simulating from

the corresponding exact distribution. In Appendix 2, the approximation

η|ξ, λ,y ∼ Beta{m(λ + 1)ξ̄ + d0,m(λ + 1)(1− ξ̄) + d1} (4.7)

to the conditional posterior (or prior) distribution of η, given the ξi and λ, is also motivated,

with ξ̄ denoting the average ξi. The beta distribution in (4.7) possesses sample size m(λ +

1) + d0 + d1, and mean

η̃ =
m(λ + 1)ξ̄

m(λ + 1) + d0 + d1

, (4.8)

which is close to ξ̄ whenever m(λ + 1) is large compared with d0 + d1. The approximation

in (4.7) may be contrasted with the exact conditional density

π(η|ξ, λ,y) ∝ π(η)l̃(η, λ|ξ) , (4.9)

for 0 < η < 1, where π(η) is a beta density with parameters d0 and d1, and

l̃(η, λ|ξ) =

∏m
i=1 ξλη

i (1− ξi)
λ(1−η)

[B{λη, λ(1− η)}]m . (4.10)

When justifying (4.7) and (4.10), it is important to note that the information provided

about η and λ by fixed ordered values of the ξi is the same as when regarding the ξi as an
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unordered random sample from a beta distribution with mean η and sample size λ. This

information is unaffected by knowledge of the data.

4.3 Regression Situations

The methodology underlying the isotonic regression examples of section 2.1 is now dis-

cussed. Consider case (B) of section 3, where each Yi is taken to possess a beta-binomial

distribution, conditional on parameters ξi and γ. Suppose that each Yi and corresponding

population proportion ξi is associated with a pre-specified value xi of a covariate, where

x1 ≤ x2 ≤ · · · ≤ xm . (4.11)

Assume that the ordering in (3.1) of the ξi is consistent with the ordering (4.11) of the xi.

A monotonic increasing regression of the ξi upon the xi is therefore assumed. In situations

where two or more of the xi are equal, the ordering of the corresponding ξi should be based

upon prior specification. Modifications to our procedure, which set two or more of the ξi

equal, would alternatively be available. The posterior means of the ξi under our general

analysis may be plotted against the xi and connected by straight lines. If two or more of

the xi are equal, then the corresponding posterior means may be weighted according to

the corresponding sample sizes. The recommended graph provides our estimated isotonic

regression of the ξi upon the xi. This semi-parametric approach provides an alternative to

parametric procedures (e.g., Leonard and Novick, 1986, and Lee and Nelder, 1996), which

replace stages 3 and 4 of our probability model, and the monotonicity assumption (3.1) by

the specification of a functional form for the regression of the ξi upon the xi. The precise

modeling of this specification might sometimes present practical difficulties.

Our semi-parametric approach is also relevant to case (A) of section 3. If the posterior

deviations of the θi from the ξi, are small, then the preceding estimated isotonic regression of

the ξi upon the xi can be used to meaningfully describe a fitted regression of the θi upon the

xi. Otherwise it is more important to report posterior inferences for the unconstrained θi.

This contrasts with previous isotonic regression procedures for binomial data, e.g., Barlow

et al. (1972).

While our approach takes into account the ordering of the xi, the specific values of the

xi are largely ignored in the posterior analysis, though they are re-introduced when plotting

the regression of the ξi upon the xi. Many isotonic regression procedures (e.g., Barlow et

al. pp. 38 - 40) similarly trade information regarding the xi for simplicity in the modeling
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procedure. Numerous possible adjustments to our method could however be considered.

For example, when the regression of the ξi upon the xi is thought to follow a segment of

a concave function, (3.1) can be replaced by a decreasing slope specification. Information

regarding the xi can also be incorporated by generalizing Stage 2 of our probability model,

by an assumption that θi|γ, ξi ∼ Beta{aiγξi, aiγ(1 − ξi)}. The ai adjust the sample size γ

and may be specified subjectively as functions of several adjacent xi. Alternatively beta

distributions for increasing ξi at Stage 3 may be taken to possess sample sizes λ and means

either equal to specified functions of the covariate, or to a hypothesized regression function

depending upon the covariate and an unknown parameter vector β.

4.4 Time Series

Let θ1, θ2, . . . , θm denote population proportions corresponding to respective time points

t1, t2, . . . , tm satisfying t1 < t2 < . . . < tm. Then Stages 2 and 3 of our probability model

describe a stochastic process for the θi with a possibly increasing trend. Stage 1 superimposes

conditionally independent binomial variation. More general stochastic processes may be

developed by modifying the constraints in (1.1) and (3.1). Monotonic successive differences

could for example be considered. When the ti are unequally spaced they may be regarded

as explanatory variables, and the possible generalizations discussed at the end of section 4.3

considered. When the ti comprise a subset of an equally spaced grid, then the interpolation

procedure described in section 7 can instead be employed.

This formulation contrasts with a stochastic growth model where the logits αi = log θi−
log(1− θi) satisfy

αi = αi−1 + φi + εi (i = 1, 2, . . . , m) , (4.12)

with

φi = φi−1 + ηi (i = 1, 2, . . . , m) , (4.13)

where α0 and φ0 are unknown, and εi and ηi are independent error terms with zero means

and respective common variances Vε and Vη. The formulation in (4.12) and (4.13) parallels a

linear growth model for normal means analyzed by West and Harrison (1989, pp. 213-219).

The same authors (pp. 562-564) refer to more general models for time-dependent binomial

frequencies of this type, which are linear in the logits, with normally distributed error terms.

West et al. (1998) apply another special case of this flexible formulation, with autore-

gressive components, to an analysis of their complete hospital quality monitor data for the

years 1988-1997. Related posterior computations are reviewed by Leonard and Hsu (1999,
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Chapter 6). Harrison et al. (1977) apply a stochastic growth model for multinomial proba-

bilities to a practical multiple time series analysis, for proportionate world sales of fibers, but

without logit transformations. Autoregressive processes for multinomial logits were proposed

by Leonard (1973). Hsu and Leonard (1997) assume a continuous time Gaussian process for

binomial logits in a semi-parametric regression context. This formulation may also be used

to model a possibly multiple time series, thus facilitating interpolations between the time

points.

5. PRACTICAL PRIOR CHOICES

The broad prior assumptions at Stage 4 of our probability model permit a wide spectrum

of representation of prior beliefs, depending upon the information or views possessed by the

statistician analyzing the data. However, in some practical situations, information external

to the current data set may be sparse. In these circumstances, pragmatic choices should be

made. For example, the values d0 = d1 = 1 lead to a uniform distribution for η on the unit

interval. We will also assume that, for some specified n0, the parameter

ρ0 = n0/(n0 + γ) (5.1)

is a priori uniformly distributed over the equally spaced grid of points i/(k + 1) for i =

1, 2, . . . , k. Then the Stage 4 distribution for γ assigns equal prior probabilities πi = 1/k to

the unequally spaced points

gi = n0(k − i + 1)/i (i = 1, 2, . . . , k) . (5.2)

Since E(ρ0) = 1/2, n0 provides a prior estimate for γ, which is more sensible than the

prior mean of γ. As k gets large, the distribution of ρ0 approaches a continuous uniform

distribution on the unit interval. In this limiting case γ possesses a Cauchy-tail prior density

π(γ) = n0/(n0 + γ)2, for 0 < γ < ∞. No prior mean for γ exists in the limiting case owing

to the extremely thick right tail of the prior distribution. The Cauchy-tail density contrasts

with the log-Cauchy prior density assumed by Crook and Good (1982) for a multinomial

smoothing parameter. In the current situation, the limiting conditional posterior density of

γ given the ξi is

π(γ|y, ξ) ∝ π(γ)
m∏

i=1

l∗i (ξi, γ) , (5.3)
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for 0 < γ < ∞, where the contributions l∗i to the product on the right hand side are defined

in (3.3). Each ξ∗i converges to unity as γ →∞, for any fixed ξi and yi. Therefore the upper

right tail of (5.3) invariably behaves like the upper right tail of π(γ), for large values of γ.

Quite interestingly, if an improperly unfinitely uniform distribution with density π(γ) ∝
1, for 0 < γ < ∞, is instead assumed for γ, then the density in (5.3) will never represent

a proper distribution, thus invalidating the entire analysis. The Cauchy-tail prior density

more appropriately controls the right tail of (5.3). This specification nevertheless represents

quite sparse prior information regarding γ.

The parameter ρ0 plays a somewhat similar role to the ρi satisfying (3.5) and (3.6), and

can be interpreted as a shrinkage proportion relating to a hypothetical binomial experiment

with sample size n0. Under a beta prior distribution for θi with sample size γ and mean ξi,

the posterior mean of θi, given only the hypothetical sample proportion p0, is the weighted

average compromise θo
i = ρ0p0 + (1− ρ0)ξi. A uniform distribution for γ rather than ρ0, on

an equally spaced grid, is much less appealing. This will become infinitely uniform as the

width of the entire grid becomes large.

The choice of k should be based partly on considerations of computational simplicity. In

practice, our prior assumptions for γ will however typically be justifiable only if the posterior

inferences are insensitive to the choices of k and the prior estimate n0. Convenient ways of

summarizing the sensitivity analysis are indicated in section 8. Reference will be made to a

baseline value n∗ for n0, equal to the value of γ for which the average shrinkage proportion

ρ̄ in (3.6) is equal to 1/2. In pragmatic terms, n∗ can be regarded as the value of γ for

which, given the observed sample sizes, we judge the monotonicity hypothesis and a general

alternative hypothesis to possess equal weight. When all the ni are equal, n∗ is equal to

their common value. More generally n∗ describes a robust center of location for the ni.

With η, γ, and λ a priori independent, it is similarly assumed that, for some specified

λ0, the parameter

ζ0 = λ0/(λ0 + λ) (5.4)

is uniformly distributed over the equally spaced grid of points i/(l + 1), for i = 1, 2, . . . , l.

The corresponding distribution for λ assigns equal prior probabilities δi = i/(l + 1) to the

unequally spaced points

hi = λ0(l − i + 1)/i (i = 1, 2, . . . , l) , (5.5)

yielding the Cauchy-tail prior density π(λ) = λ0/(λ0 + λ)2, for 0 < λ < ∞, in the limiting
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case, or l gets large. A sensitivity analysis with respective to the choices of l and the prior

estimate λ0 of λ should also be performed. As an alternative specification, the shrinkage

proportion ζ in (4.5) could be taken to be uniformly distributed over the same grid. In this

case γ and λ would not be independent.

When γ and λ are independent it may be reasonable to replace γ in (4.5) by its prior

estimate n0 before taking ζ to be uniformly distributed. This is the same as taking ζ0 in

(5.4) to be uniformly distributed, with the choice λ0 = n0 + 1 for the prior estimate of

λ. Our prior estimate for the shrinkage proportion ζ, which controls the weighted average

compromise (4.3), is then equal to the neutral value of 1/2. The specification λ0 = n0 + 1

should not therefore unduly bias our investigation of the monotonicity hypothesis, and is

consequently recommended as a baseline choice. The initial baseline selections n0 = n∗

and λ0 = n∗ + 1, when followed by a careful sensitivity analysis, promise a reasonably fair

evaluation of the information regarding possible monotonicity contained in the current data.

Let ρ̃∗ and ζ̃∗ denote the posterior means of the bounded parameters ρ̃ = n∗/(n∗+γ) and

ζ̃ = (n∗+1)/(n∗+λ+1) under the preceding prior assumptions, where the prior parameters

n0 and λ0 may differ from the values n∗ and n∗ + 1. The posterior means of the unbounded

parameters γ and λ invariably become arbitrarily large as k and l get large. We therefore

recommend estimating γ and λ in the posterior assessment by the inverse transformations

γ∗ = n∗(1− ρ̃∗)/ρ̃∗ , (5.6)

and

λ∗ = (n∗ + 1)(1− ζ̃∗)/ζ̃∗ . (5.7)

Unconditional posterior inferences for the θi and ξi promise to be reasonably insensitive

to the choices of k and l, since their posterior distributions, given γ and λ, depend only upon

bounded functions of γ and λ.

6. A TIME SERIES ANALYSIS FOR A SAFARI CAT

We analyze the data for cat 40665, firstly under our Stage 1 binomial sampling assump-

tions. The θ̃∗i in the fifth column of Table 2 describe posterior means for the proportions

θi of domestic type cells in the full progenitor pools at time ti (see second column) as dis-

cussed in section 2.2, and for the data introduced in Table 1, with m = 18. The analysis in

the present section does not accommodate the unequally spaced nature of the ti, and will
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therefore be qualified in section 7. By reversing the order of the data our computer program

may be used to investigate the possibility of monotonic decreasing, rather than monotonic

increasing, population proportions.

(Table 2 is about here)

The posterior analysis is based upon the prior formulations of sections 3 and 5, with

the choices k = l = 24. The grids for the parameters ρ0 in (5.1) and ζ0 in (5.4) therefore

each split the unit interval into 25 intervals of equal width 0.04. However, almost identical

numerical results, to three decimal places, were obtained for all entries in the third to sixth

columns of Table 2, when instead k = l = 49, and when k = l = 99. All of these entries, when

accurately simulated, will approximate limiting quantities as k and l get large. However, the

sensitivity analysis conducted in the present section suggests that the choices k = l = 24 will

suffice, unless greater accuracy is required for particular posterior quantities, when compared

with the precision of the further results discussed below.

We initially assume the values n0 = n∗ = 73.65 and λ0 = n∗+1 = 74.65 as prior estimates

for γ and λ. The baseline value n∗ was obtained by setting ρ̄ in (3.6) equal to 0.5. and then

solving for γ using a standard Newton-Raphson procedure, with n̄ = 77.17 as starting value.

While the baseline values would seldom reflect prior beliefs, we will show in section 8 that

the posterior analysis is reasonably insensitive to other choices of n0 and λ0, which might be

elicited from subjective prior beliefs or opinions.

The posterior estimates for γ and λ, satisfying (5.6) and (5.7), are γ∗ = 46.91 and

λ∗ = 15.92. These values compare with γ∗ = 46.08 and λ∗ = 15.78 when instead k = l = 49,

and with γ∗ = 46.98 and λ∗ = 15.86 when instead k = l = 99. When k = l = 24, the

posterior means of the average shrinkage proportion ρ̄ in (3.6), the shrinkage proportion ζ

in (4.5), and the common location parameter η for the ξi are respectively 0.610, 0.733, and

0.528, with associated posterior standard deviations 0.130, 0.158, and 0.038. The preceding

six numerical values contrast with the values 0.608, 0.735, 0.528, 0.133, 0.156, and 0.038

when instead k = l = 49, and with the values 0.609, 0.733, 0.529, 0.133, 0.158, and 0.038

when instead k = l = 99.

The posterior means θ̃∗i of the θi in Table 2 smooth the pi substantial proportions of the

distances towards the corresponding, strictly decreasing, posterior means ξ̃∗i of the ξi. For

example, θ̃∗12 = 0.473 shrinks p12 = 0.466 about 41% of the distance towards ξ̃∗12 = 0.483.

Therefore, while the θ̃∗i are not monotonic decreasing they are substantially smoothed in the
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light of a monotonic decreasing prior hypothesis. The posterior standard deviations of the

θi are reported in the sixth column of Table 2. With the exception of std(θ6) they are less

than the corresponding si. The value p6 = 0.789 is the observed proportion most in conflict

with the monotonicity hypothesis.

(Table 3 is about here)

The entries π∗i to the third column of Table 3 describe the posterior probabilities for γ

corresponding to the values for γ in the second column. The entries δ∗i to the last column

describe the posterior probabilities for λ corresponding to the values for λ in the fifth column.

The marginal posterior distributions of γ and λ are both quite informative, with interior

modes and steadily decreasing right and left tails, despite the diffuse properties of the prior

distribution.

The entries to the fourth column of Table 3 denotes the values for ρ̄ in (3.6) matching the

values for γ in the second column. The π∗i hence also define the marginal posterior distribu-

tion of ρ̄. Under binomial assumptions, we recommend partly basing an overall appraisal of

the monotonicity hypothesis upon an applied evaluation of this marginal distribution, a pro-

cess which should where possible refer to experience with previous data sets. A concentration

of this distribution towards zero provides evidence in favor of the monotonicity hypothesis.

A concentration toward unity provides evidence against the monotonicity hypothesis. The

posterior probability

τ = p(ρ̄ ≤ 0.5|y) = p(γ ≥ n∗|y) (6.1)

may be usefully considered. Remember from (3.5) and (3.6) that, given γ and the ξi, ρ̄ =

1/2 provides a neutral average value for the shrinkage proportions ρi, which measure the

way the θ∗i compromise between the pi and the ξi. In our example τ = 0.194. It instead

k = l = 99, then τ = 0.204. The qualified analysis of section 7 suggests a reduction to

τ = 0.136. These values together with a general appraisal of the posterior distribution, draw

us to the conclusion that, even under strict binomial sampling assumptions with all their

practical implications, there is insufficient evidence in the data to entirely refute a monotonic

decreasing hypothesis..

It is also possible to draw posterior inferences regarding the monotonic decreasing ran-

dom population proportions ξi, under our beta-binomial sampling assumptions The posterior

means ξ̃∗i in Table 2 smooth the corresponding unordered sample proportions pi quite sub-

stantially. The posterior standard deviations of the ξi are reported in the eighth column. In
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the ninth column we however report the conceptually difference quantities

s∗i = (D∗
i )

1
2{ξ̃∗i (1− ξ̃∗i )/ni} 1

2 (6.2)

for i = 1, 2, . . . , m, where D∗
i = (ni +γ∗)/(1+γ∗) with γ∗ = 46.91. The s∗i provide estimated

standard errors for the sample proportions pi. They are appropriate under the conditional

independent beta-binomial sampling model obtained by combining just the first two stages of

our probability model. The point estimates γ∗ = 46.91 and ξ∗1 = 0.753, ξ∗2 = 0.691, . . . , ξ∗18 =

0.283 are imputed for the model parameters. Owing to over-dispersion the values for the s∗i
substantially inflate the si, which are only appropriate under binomial assumptions.

The entries in the last column of Table 2 describe the normalized residuals

ri = (pi − ξ̃∗i )/s
∗
i , (6.3)

for i = 1, 2, . . . , m. The ri may be used to judge the plausibility of our model specification

of monotonic decreasing ξi. With the exception of r6 = 2.109 all of the residuals are reas-

suringly small. There is no particular pattern in the ri which might refute the monotonicity

specification for the ξi. An intuitive overall evaluation of our monotonicity specification may

be made by reference to the average squared normalized residual

W =
m∑

i=1

r2
i /m . (6.4)

In the current example, W = 0.873. If instead k = l = 49 or k = l = 99 then W = 0.874.

The qualified analysis of section 7 suggests that W = 0.918. By essential reference also

to our preceding residual analysis, and to the implications, discussed in section 4.1, in the

context of isotonic regression, of the flattening property described there, we are drawn to

a key conclusion. The current data appear to be largely consistent with the monotonicity

specification of the form ξ1 ≥ ξ2 ≥ · · · ≥ ξ18, under our beta-binomial sampling assumptions

with a common parameter γ. The posterior means and standard deviations of the ξi should

also be considered, together with the experimental nature of the sampling methods employed

by Abkowitz et al. (1988), and the related possibility of deviations from our beta-binomial

model. The underlying population proportions ξi may well be noticeably strictly decreasing.

Further overall conclusions are stated towards the end of section 7.

7. AN INTERPOLATION PROCEDURE
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The analysis of section 6 is now qualified by taking into account the unequally spaced

nature of the time points. An interpolation device is employed. For the posterior analysis

summarized in Table 2, the times ti, while not equally spaced, comprise a subset of an equally

spaced lattice within boundaries t1 = 10 and t18 = 60. In the second column of Table 4, the

times ti are instead equally spaced, for i = 1, 2, . . . , 51, with t1 = 10 and t51 = 60. They

include the sampling times in Table 2, together with 33 interpolated points.

(Table 4 is about here)

The positive values for the yi and ni in the third and fourth columns of Table 4 comprise

the data from Table 1 for the original time points. The values yi = 0 and ni = 0 are imputed

at all interpolated time points. Our general formulation and methodology may be applied

to the m = 51 situation. The conditional posterior distribution of θi, given ξi and γ, is

beta with mean ξi and sample size γ, the prior specification, at all interpolated time points.

As nipi = yi, the conditional posterior mean in (3.4) reduces to ξi whenever yi = ni = 0.

Consequently, at our interpolated time points, the unconditional posterior mean of θi always

equals the unconditional posterior mean of ξi, and the unconditional posterior variance of θi

always exceeds the unconditional posterior variance of ξi.

With k = l = 24, we initially assume the prior estimates n0 = n∗ = 73.65 and λ0 =

n∗ + 1 = 74.65 for γ and λ. These yield the posterior estimates γ∗ = 42.72 and λ∗ = 18.88.

The posterior means of ρ̄, ξ, and η are respectively 0.632, 0.684, and 0.500, where ρ̄ is

slightly redefined below. The corresponding posterior standard deviations are 0.117, 0.158,

and 0.029.

The posterior means ξ̃∗i for the ξi in the penultimate column of Table 4 are strictly

decreasing. For the original time points, the ξ̃∗i only slightly differ from the values in Table

2. Quite appealing values are reported at the interpolated time points. For example, the

three decreasing values ξ̃25 = 0.506, ξ̃26 = 0.499, and ξ̃27 = 0.493 now interpolate the values

ξ̃24 = 0.512 and ξ̃28 = 0.486 at the time points t24 = 33 and t28 = 37, for which we previously

recorded the estimates ξ̃11 = 0.504 and ξ̃12 = 0.483.

At the original time points, the posterior means θ̃∗i for the θi, as reported in the seventh

column of Table 4, only slightly differ from the values recorded in Table 2. As theoretically

required, the θ̃∗i for the interpolated time points indeed equal the corresponding imputed ξ̃i.

The posterior standard deviations of the θi however substantially inflate those of the ξi at

these time points, as reported in the eighth and tenth columns of Table 4.
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When providing overall measures of discrepancies from monotonicity, we slightly redefine

ρ̄ in (3.6) and W in (6.4). Just average the ρi in (3.5) and W in (6.4) over those i =

1, 2, . . . ,m for which ni > 0. With these provisos, W = 0.918, and τ in (6.1) equals 0.136. A

residual analysis, not fully reported here, provides normalized residuals at all the original time

points, and very similar conclusions to the analysis recorded in Table 2. For example, r12 =

2.198. Overall, the key conclusions, reported in section 6 are further substantiated. When

comparing the results in sections 6 and 7, we also conclude that not too much information

is lost by ignoring the unequally spaced nature of the time points. This conclusion is also

of relevance to isotonic regression, and further motivates our method of analysis in sections

2.1, 4.3 and 9.

The interpolation device may also be used to omit observations corresponding to large

residuals. For example, when y12 = 90 and n12 = 114 are replaced by y12 = n12 = 0, W

increases to 0.984, while τ increases substantially to 0.496. Under strict binomial sampling

assumptions, we would conclude that the monotonicity hypothesis is much more consistant

with the data, when considered at all eighteen of the original sampling times, but with the

exception of t12 (previously t6) = 21. This conclusion compares with the initial sampling

assumptions made by Newton et al. However, when seeking to justify our monotonicity

hypothesis under extra-binomial sampling assumptions, we would include the data for all

eighteen original sampling times. For the modified analysis, n0 = n∗ = 71.77, λ0 = n∗ + 1 =

72.77 and ρ̄, ζ, and η possess posterior means 0.486, 0.744, and 0.487, with respective

standard deviations 0.167, 0.150, and 0.027.

8. SENSITIVITY ANALYSIS

The entries in Table 5 summarize the sensitivity of the posterior conclusions of section 6

to the choices of the prior estimates n0 and λ0 for γ and λ, when k = l = 25. Just 20,000

simulations were performed after burn-in, for each choice of n0 and λ0, but with the same

random numbers for each new choice of n0 and λ0, to preclude differences due to simulation

error. The more precisely calculated posterior conclusions, subject to the baseline choices

n0 = n∗ = 73.65 and λ0 = n∗ + 1 = 74.65, are recorded in the last row.

(Table 5 is about here)

The bounded functions ρ̄ and ζ usefully reparameterize γ and λ, and provide overall

summaries of the posterior smoothing of the θi and ξi. Their posterior means and standard
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deviations are reported in the second to fifth columns of Table 5. The differences between

these values, across the ranges of values of n0 and λ0 considered, are reasonably small. The

posterior means and standard deviations of the location parameter η are not reported here,

since they are closely approximated by 0.528 and 0.038 for all these choices of n0 and λ0.

The first seven rows of Table 5 refer to the sensitivity of the posterior analysis when

λ0 = n0 + 1. Noting that n0 = 70 is close to the baseline value n∗ = 73.65, we see that the

entries in the second to fifth columns are reasonably insensitive to choices of n0 between 10

and 130. Consequently, if indeed λ0 = n0 + 1, the conclusions of section 6 should appeal

to subjective Bayesians, unless they possess substantial prior information for or against the

monotonicity hypothesis for the θi.

The eighth to thirteenth rows instead fix n0 = 70 and relax the assumption λ0 = n0+1 by

varying λ0. All entries in the second to seventh columns are remarkably insensitive to choices

of λ0 between 10 and 130. As n∗ = 73.65 would yield similar results, this further validates the

conclusions of section 6. The fourteenth to fifteenth rows refer to more extremely contrasting

values of n0 and λ0. While the differences for the entries in the second to fifth columns are

now substantial, they are not overwhelming. The value n0 = 10 expresses, in the current

context, a relatively strong prior belief that the monotonicity hypothesis for the θi is untrue.

The entries in the sixth and seventh columns report the diagnostic quantities τ and

W . Unless n0 = 10, all entries are reasonably insensitive to the choices of n0 and λ0 Very

similar conclusions are available regarding the sensitivity of the posterior analysis of section 8,

though the posterior mean and standard deviation of η were slightly more sensitive to changes

to η0 and λ0. We in general recommend performing a preliminary sensitivity analysis, before

proceeding to the main analysis, with a large number of simulations.

9. PERFORMANCE INDICATORS FOR QUALITY MONITORING

The conclusions described in section 2.1 for the data introduced there are now discussed

further. The solid plot in Figure 1 describes the piecewise linear isotonic regression, defined in

section 4.2, of the ξi, upon the 1992 raw proportions xi. Smoothed performance indicators

ξ̃∗1 , ξ̃
∗
2 , . . . , ξ̃

∗
159 for 1993, under conditionally independent beta-binomial assumptions, are

thereby available. This ordering is consistent with the rank ordering of raw proportions

for 1992. The posterior standard deviations of the ξi decrease from std(ξ1) = 0.032 (with

n1 = 350 and s1 = 0.022) to std(ξ69) = 0.10 (with n69 = 786 and s69 = 0.017). They then

increase from std(ξ̃∗109) = 0.010 (with n109 = 301 and s109 = 0.027) to std(ξ̃∗159) = 0.031
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(with n159 = 481 and s159 = 0.022). They are however generally much smaller than the

corresponding si.

After an initial sensitivity analysis, it was assumed that k = 99 and l = 24. The baseline

values n∗ = 242.77 and n∗ + 1 = 243.77 are employed for γ0 and η0, and the posterior

conclusions can again be shown to be reasonably insensitive to these assumptions. The

posterior estimates for γ and λ are γ∗ = 25.99 and λ∗ = 106.46. As ρ̄ has posterior mean

0.862 and standard deviation 0.013, with τ virtually equal to zero, there is negligible evidence

to substantiate (1.1) under binomial sampling assumptions. As the shrinkage proportion ζ

has posterior mean 0.214 and standard deviation 0.071, the ξ̃∗i are substantially smoothed

towards a common value. The location parameter η possesses posterior mean 0.439 and

standard deviation 0.010.

The average squared normalized residual is W = 1.006. A full residual analysis, though

not reported here, can be roughly inferred from Figure 2. This indicates that the data

are largely consistent with (3.1). In other words, the performance indicators for 1993 are

largely consistent with the rank ordering for 1992 when sensible extra-binomial variation is

permitted. The most discrepant ri, for hospitals 39, 44, 66, 77, 153, 157, and 158, were

respectively 2.51, 2.38, 2.84, 2.36, 2.79, -3.56, and 2.76, corresponding to the sample sizes

220, 20, 40, 1630, 176, 702, and 78. However, when the four hospitals 39, 77, 153, 157 were

dropped from the analysis a larger value of W = 1.037 was obtained. Moreover, several

further discrepant residuals appeared. It was therefore decided to include all original 159

hospitals in the analysis.

The two dotted plots in Figure 1 graph the pi − s∗i and the pi + s∗i where s∗i in (6.2) is

the estimated standard error of pi under independent beta-binomial sampling assumptions.

These estimated standard errors are quite large, ranging in magnitude from 0.092 to 0.237,

though mainly in the region of 0.10. For a typical sample size of 250 our extra-binomial

assumptions inflate the estimated standard errors by a factor of 3.20. The predictions of

sample proportions for future years, with comparable sample sizes, are likely to be subject

to greater random variability.

The solid graph in Figure 2 indicates that the performances for 1993 are also largely

consistent with the rank ordering of the DRG predictions. The analysis assumed the same

prior parameters as for Figure 1 and yielded W = 1.005, γ∗ = 24.38, and λ∗ = 101.17. The

posterior means of ρ̄, ζ, and η were 0.868, 0.209, and 0.443, with respective posterior standard
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deviations 0.013, 0.059, and 0.010. There is a remarkable similarity with the corresponding

posterior quantities underlying the analysis for Figure 1. This further emphasizes the close

comparability of the predictive performances of the quite different rank orderings, based

upon the 1992 raw indicators, and the DRG predictions for 1993.

The accuracy of prediction from this noisy data set is open to some improvement by refer-

ence to the binomial logit/normal random effects time series formulation employed by West

et al. (1998). See also Aguilar et al. (1999). This general paradigm offers considerable scope

for incorporating information from years previous to 1992, and combining information across

the hospitals. For, say 1993, West et al. assume a simple linear regression for the binomial

logits, upon the logits of the DRG predictions. Separate fixed effects regression parameters

are estimated for each year. Random error terms, expressing assumed autoregressive time

dependence and the representing the substantial residual variation in the data, are added to

the regression functions. Any estimated standard errors of the sample proportions should

refer to appropriate marginal distributions under random effects assumptions, since these

can express the extra-binomial variability inherent in the data. West et al. demonstrate that

the total lower level random effects variability is very large, thus again highlighting possible

difficulties with prediction. They obtain very useful descriptive conclusions regarding the

regression coefficients. More generally, the usefulness of performance indicators and quality

monitoring, for predictive rather than descriptive purposes, is open to further discussion

when the data are not objectively generated by random sampling schemes.

APPENDIX 1: A SIMPLE APPROXIMATION

Let θ|ξ ∼ Beta{γξ, γ(1 − ξ)}, where ξ ∼ Beta(b0, b1), with b0 = λη and b1 = λ(1 − η).

For fixed γ, λ, and η, we consider the approximation

ξ|θ ∼ Beta{(γ + 1)θ + b0, (γ + 1)(1− θ) + b1} (1)

to the conditional distribution of ξ given θ. In Figure 3 we compare the corresponding

approximate and exact densities, for the choices η = 0.3, γ = 10 and λ = 11, so that

b0 = 3.3 and b1 = 7.7, and for six different values (0.05, 0.25, 0.40, 0.60, 0.75, and 0.95)

of θ. The approximate (dotted) curves are close to the corresponding exact (solid) curves,

unless θ is very different from λ. It is also possible to show that they substantially increase

in accuracy as b0, b1 or γ increases. Some slight algebraic rearrangement of (1) justifies the

approximation in (4.2) and a modest extension suggests the approximation in (4.7).
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(Figure 3 is about here)

The approximation in (1) may be motivated by noting that, given ξ, ỹ = (γ+1)θ possesses

mean ñξ and variance ñξ(1 − ξ) where ñ = γ + 1. By matching first two moments, we see

that when ñ is an integer, a specified value of ỹ provides similar information regarding ξ as

if ỹ represented the realization of a BIN(ξ, ñ) variate. This indicates the plausibility of the

discrete approximation, (γ +1)θ|ξ ∼ BIN(ξ, ñ) to the continuous exact distribution. Subject

to this approximation, the conjugate analysis for the binomial distribution, then tells that

ξ|ỹ ∼ Beta{b0 + ỹ, b1 + ñ − ỹ}, which is equivalent to (1). Our derivation is not however

as convincing as the numerical comparisons. The result certainly needs to be inferred and

subsequently numerically validated in situations when ñ is not an integer.

APPENDIX 2: POSTERIOR COMPUTATIONS

We employ standard Metropolis algorithm/MCMC procedures based upon successive

simulations from the following conditional distributions, which all refer to the joint distribu-

tion of the θi, ξi, γ, λ, and η, conditional on the observed data:

(D1) Given the ξi and γ, the θi are independent and beta distributed, with respective sample

sizes ni + γ and means in (3.4). (When ni = 0, θi possesses a beta distribution with sample

size γ and mean ξi.)

(D2) Given the θi, γ, η, and λ, an approximate joint distribution for the ξi constrains the m

independent distributions in (4.2) to the region (3.1).

(D3) The distribution of γ, given the ξi, but unconditional upon the θi, assigns probabilities

π∗1, π∗2, . . . , π∗k to the points g1, g2, . . . , gk, where

π∗i ∝ πil
∗(hi|ξ,y) , (2)

for i = 1, 2, . . . , m, with π1, π2, . . . , πk denoting the corresponding prior probabilities, and

l∗(γ|ξ,y) =
m∏

k=1

l∗(γ|ξk, yk) , (3)

where the contributions to the product on the right hand side of (3) are defined in (3.3). It

is essential to refer to (2) rather than posterior probabilities for γ, given the ξi and θi, in

order to avoid insurmountable instabilities in the posterior computations.
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(D4) The distribution of λ, given η and the ξi, assigns probabilities δ∗1, δ∗2, . . . , δ∗l to the

points g1, g2, . . . , gl, where

δ∗i ∝ δil̃(η, gi|ξ) , (4)

for i = 1, 2, . . . , l, with δ1, δ2, . . . , δl denoting the corresponding prior probabilities, and

l̃(η, λ|ξ) defined in (4.10).

(D5) The distribution of η, given λ and the ξi, may be approximated by the beta distribution

in (4.7).

The simulations from D2 can be made effectively exact. The constrained beta approx-

imations can be handled by successive sampling from truncated beta distributions. When

generating values for η, just simulate from the approximate distribution in (4.7). This con-

ditional distribution can be highly concentrated, for large λ, about its mean in (4.8) and

the corresponding exact density in (4.9) can be highly peaked around a slightly different

location. Acceptance sampling for η can therefore lead to a high rejection rate. However,

subject to our minor approximation, all posterior quantities of interest can be calculated in

standard fashion.

About 200,000 successive simulations on all parameters are recommended for good practi-

cal accuracy, after an initial burn-in period of about 1,000 simulations. Good starting values

in D1 are γ = n∗, our baseline prior estimate, and ξi = pi for i = 1, 2, . . . , m. Increasing

the numbers k and l of grid points too much will not necessarily provide completely exact

representations of Bayesian inferences under a continuous prior distribution. The errors of

our discrete approximation to a continuous posterior distribution will confound with the

errors of simulation.

REFERENCES

Abkowitz, J.L., Catlin, S.N., McCallie, M.T., and Guttorp, P. (2002), “Evidence

that the Number of Hematopoietic Stem Cells Per Animal is Conserved in

Mammals,” Blood, 100, 2665-2667.

Abkowitz, J.L., Linenberger, M., Newton, M.A., Shelton, G.H., Ott, R.L., and

Guttorp, P. (1990), “Evidence for Maintenance of Hematopoiesis in a Large

Animal by the Sequential Activation of Stem Cell Clones,” Proceedings of the

National Academy of Science, 87, 9062-9066.

26



Abkowitz, J.L., Linenberger, M., Persik, M., Newton, M.A., and Guttorp, P.

(1993), “Behavior of Feline Hematopoietic Stem Cells Years After Busulfan

Exposure,” Blood, 82, 2096-2013.

Abkowitz, J.L., Ott, R.M., Holly, R.D., and Adamson, J.W. (1988), “Clonal

Evolution Following Chemotherapy-Induced Stem Cell Depletion in Cats Het-

erozygous for Glucose-6-Phosphate Dehydrogenase,” Blood, 71, 1687-1692.

Abkowitz, J.L., Tabadoa, M., Shelton, G.H., Catlin, S.N., and Guttorp, P. (1998),

“An X-chromosome Gene Regulates Hematopoietic Stem Cell Kinetics,” Pro-

ceedings of the National Academy of Sciecne, 95, 3862-3866.

Aguilar, O. and West, M. (1998), “Analysis of Hospital Quality Monitors Using

Hierarchical Time Series Models. Bayesian Statistics in Science and Technol-

ogy: Case Studies IV, (eds: C. Gatsonis, R.E. Kass, B. Carlin, A. Carriquiry,

A. Gelman, I. Verdinelli, and M. West ), Springer-Verlag, New York.

Aguilar, O., Huerta, G., Prado, R., and West, M. (1999), “Bayesian Inference

on Latent Structure in Time Series,” In Bayesian Statistics 6 (eds: J.M.

Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith), Oxford University

Press, Oxford.

Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D. (1972), Sta-

tistical Inference under Order Restrictions: The Theory and Application of

Isotonic Regression, New York: John Wiley & Sons.

Brecher, G., Beal, S.L., and Schneiderman, M. (1986), “Renewal and Release

of Hemopoietic Stem Cells: Does Clonal Succession Exist?”, Blood Cells, 12,

103-112.

Burgess, J., Lourdes, V., and West, M. (2000), “Profiling Mental Health Provider

Trends in Health Care Delivery Systems,” Health Services and Outcomes Re-

search Methodology, 1, 253-276.

Crook, J.F. and Good, I.J. (1982), “The powers and strengths of tests for multi-

nomials and contingency tables,” Journal of the American Statistical Associ-

ation, 1982, 77, 793-802.

Golde, D.W. (1991), “The Stem Cell,” Scientific American, 265(6), 86-93.

Guttorp, P., Newton, M.A., and Abkowitz, J.L. (1990), “A Stochastic Model for

Hematopoiesis in Cats,” IMA Journal of Mathematics Applied in Medicine

27



and Biology, 7, 125-143.

Harrison, P.J., Leonard, T., and Gazard, T.N. (1977), “An Application of Mul-

tivariate Hierarchical Forecasting,” Research Report, No. 12, Department of

Statistics, University of Warwick.

Hsu, J.S.J. and Leonard, T. (1997), “Bayesian Semi-Parametric Procedures for

Logistic Regression,” Biometrika, 64, 85-93.

Hsu, J.S.J., Leonard, T., and Tsui, K. (1991), “Statistical Inference for Multiple

Choice Tests,” Psychometrika, 56, 327-348.

Kay, H.G.M. (1965), “How Many Cell Generations?”, Lancet, 2, 418.

Lemischka, I.R. (1992), “The Hematopoietic Stem Cell and Its Clonal Progeny:

Mechanisms Regulating the Hierarchy of Primitive Haematopoietic Cells.”

Cancer Surveys, 15, 3-18.

Lee, Y. and Nelder, J.A. (1996) “Hierarchical Generalized Linear Models (with

discussion),” Journal of the Royal Statistical Society, Ser. B, 58, 619-678.

Leonard, T. (1972), “Bayesian Methods for Binomial Data,” Biometrika, 59,

581-589.

Leonard, T. (1973), “A Bayesian Method for Histograms,” Biometrika, 60, 297-

308.

Leonard, T. (1976), “Some Alternative Approaches to Multiparameter Estima-

tion,” Biometrika, 63, 69-76.

Leonard, T. and Hsu, J.S.J. (1999), Bayesian Methods: An Analysis for Statis-

ticians and Interdisciplinary Researchers. New York: Cambridge University

Press.

Leonard, T. and Novick, M.R. (1986), “Bayesian Full Rank Marginalization for

Two-way Contingency Tables,” Journal of Educational Statistics, 11, 33-56.

Newton, M.A., Guttorp, P., Catlin, S., Assuncão, R., and Abkowitz, J.L. (1995),

“Stochastic Modeling of Early Hematopoiesis,” Journal of the American Sta-

tistical Association, 90, 1146-1155.

O’Hagan, A. and Leonard, T. (1976), Bayes Estimation Subject to Uncertainty

about Parameter Constraints,” Biometrika, 63, 201-203.

Warn, D.E., Thompson, S.G., and Spiegelhalter, D.J. (2002), “Bayesian Random

Effects Meta-analysis of Trials with Binary Outcomes: Methods for the Ab-

28



solute Risk Difference and Relative Risk Scales,” Statistics in Medicine, 21,

1601-1623.

West, M. and Aguilar, O. (1997), “Studies of Quality Monitor Time Series: The

VA Hospital System,” Report for the VA Management Science Group, Bed-

ford, MA.

West, M., Aguilar, O., and Lourdes, V. (1998), VA Hospital Quality Monitors:

1988-1997, Bedford, MA. West, M. and Harrison, P.J. (1989), Bayesian Fore-

casting and Dynamic Models. New York: Springer-Verlag.

29



Table 1: A Time Series for a Safari Cat
i ti yi ni pi si zi

1 10 48 59 0.814 0.051 2.432

2 12 35 57 0.614 0.064 0.679

3 14 32 58 0.552 0.065 -1.137

4 16 43 66 0.652 0.059 0.672

5 18 35 59 0.593 0.064 -2.635

6 21 90 114 0.789 0.038 2.003

7 23 76 113 0.673 0.044 2.163

8 26 50 95 0.526 0.051 -0.681

9 29 40 69 0.580 0.059 -0.331

10 31 34 56 0.607 0.065 2.362

11 33 28 70 0.400 0.059 -0.746

12 37 27 58 0.466 0.065 -1.095

13 39 48 86 0.558 0.054 2.912

14 41 44 123 0.358 0.043 0.479

15 43 20 62 0.323 0.059 -1.786

16 51 27 56 0.482 0.067 3.178

17 57 30 126 0.238 0.038 -0.297

18 60 16 62 0.258 0.056 —
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Table 2: Posterior and Residual Analysis

i ti pi si θ̃∗i std(θi) ξ̃∗i std(ξi) s∗i ri

1 10 0.814 0.051 0.789 0.046 0.753 0.057 0.083 0.722

2 12 0.614 0.064 0.649 0.052 0.691 0.043 0.090 -0.850

3 14 0.552 0.065 0.601 0.053 0.662 0.038 0.092 -1.200

4 16 0.652 0.059 0.649 0.047 0.644 0.036 0.090 0.086

5 18 0.593 0.064 0.609 0.050 0.627 0.035 0.094 -0.365

6 21 0.789 0.038 0.738 0.040 0.613 0.035 0.084 2.109

7 23 0.673 0.044 0.650 0.039 0.593 0.034 0.084 0.940

8 26 0.526 0.051 0.542 0.044 0.570 0.033 0.087 -0.496

9 29 0.580 0.059 0.568 0.048 0.550 0.032 0.093 0.321

10 31 0.607 0.065 0.572 0.052 0.529 0.033 0.098 0.800

11 33 0.400 0.059 0.441 0.049 0.504 0.033 0.093 -1.111

12 37 0.466 0.065 0.473 0.051 0.483 0.034 0.097 -0.185

13 39 0.558 0.054 0.524 0.047 0.463 0.035 0.090 1.064

14 41 0.358 0.043 0.378 0.039 0.433 0.038 0.084 -0.890

15 43 0.323 0.059 0.357 0.049 0.406 0.041 0.094 -0.888

16 51 0.482 0.067 0.435 0.055 0.380 0.043 0.095 1.071

17 57 0.238 0.038 0.262 0.036 0.331 0.051 0.080 -1.164

18 60 0.258 0.056 0.267 0.048 0.283 0.058 0.086 -0.286
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Table 3: Posterior Probabilities
i γ = gi π∗i ρ̄ λ = hi δ∗i
1 3.07 0.000 0.959 3.11 0.004

2 6.40 0.001 0.918 6.49 0.112

3 10.04 0.006 0.877 10.18 0.259

4 14.03 0.024 0.836 14.22 0.249

5 18.41 0.052 0.796 18.66 0.165

6 23.26 0.083 0.756 23.57 0.093

7 28.64 0.109 0.717 29.03 0.050

8 34.66 0.122 0.677 35.13 0.028

9 41.43 0.123 0.637 41.99 0.016

10 49.10 0.113 0.598 49.77 0.009

11 57.87 0.096 0.559 58.65 0.005

12 67.99 0.077 0.520 68.91 0.003

13 79.79 0.059 0.480 80.87 0.002

14 93.74 0.044 0.441 95.01 0.001

15 110.48 0.031 0.402 111.98 0.001

16 130.94 0.021 0.363 132.71 0.001

17 156.51 0.014 0.323 158.63 0.000

18 189.39 0.009 0.284 191.96 0.000

19 233.23 0.006 0.244 236.39 0.000

20 294.60 0.004 0.204 298.60 0.000

21 386.67 0.002 0.164 391.92 0.000

22 540.11 0.001 0.124 547.44 0.000

23 846.99 0.001 0.083 858.49 0.000

24 1767.62 0.000 0.042 1791.62 0.000
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Table 4: Posterior Estimates and Imputations

i ti yi ni pi si θ̃∗i std(θi) ξ̃∗i std(ξi)

1 10 48 59 0.814 0.051 0.791 0.046 0.756 0.054

2 11 0 0 - - 0.713 0.088 0.713 0.046

3 12 35 57 0.614 0.064 0.646 0.052 0.687 0.040

4 13 0 0 - - 0.670 0.086 0.670 0.038

5 14 32 58 0.552 0.065 0.597 0.053 0.656 0.036

6 15 0 0 - - 0.646 0.086 0.646 0.035

7 16 43 66 0.652 0.059 0.646 0.047 0.636 0.034

8 17 0 0 - - 0.628 0.086 0.628 0.033

9 18 35 59 0.593 0.064 0.605 0.050 0.620 0.032

10 19 0 0 - - 0.612 0.086 0.612 0.031

11 20 0 0 - - 0.605 0.086 0.605 0.031

12 21 90 114 0.789 0.038 0.737 0.040 0.598 0.030

13 22 0 0 - - 0.590 0.086 0.590 0.030

14 23 76 113 0.673 0.044 0.648 0.040 0.583 0.029

15 24 0 0 - - 0.575 0.086 0.575 0.028

16 25 0 0 - - 0.567 0.086 0.567 0.028

17 26 50 95 0.526 0.051 0.537 0.043 0.560 0.028

18 27 0 0 - - 0.553 0.086 0.553 0.027

19 28 0 0 - - 0.546 0.086 0.546 0.027

20 29 40 69 0.580 0.059 0.565 0.048 0.539 0.027

21 30 0 0 - - 0.533 0.086 0.533 0.027

22 31 34 56 0.607 0.065 0.573 0.052 0.526 0.027

23 32 0 0 - - 0.519 0.087 0.519 0.027

24 33 28 70 0.400 0.059 0.442 0.049 0.512 0.027

25 34 0 0 - - 0.506 0.087 0.506 0.028

26 35 0 0 - - 0.499 0.087 0.499 0.028

27 36 0 0 - - 0.493 0.087 0.493 0.028

28 37 27 58 0.466 0.065 0.474 0.051 0.486 0.028

29 38 0 0 - - 0.480 0.087 0.480 0.029

30 39 48 86 0.558 0.054 0.530 0.046 0.474 0.029
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Table 4 (Continued)

i ti yi ni pi si θ̃∗i std(θi) ξ̃∗i std(ξi)

31 40 0 0 - - 0.467 0.087 0.467 0.030

32 41 44 123 0.358 0.043 0.384 0.039 0.460 0.031

33 42 0 0 - - 0.453 0.088 0.453 0.031

34 43 20 62 0.323 0.059 0.372 0.050 0.446 0.032

35 44 0 0 - - 0.440 0.088 0.440 0.033

36 45 0 0 - - 0.434 0.088 0.434 0.034

37 46 0 0 - - 0.427 0.088 0.427 0.035

38 47 0 0 - - 0.420 0.088 0.420 0.035

39 48 0 0 - - 0.413 0.089 0.413 0.036

40 49 0 0 - - 0.406 0.089 0.406 0.037

41 50 0 0 - - 0.399 0.089 0.399 0.038

42 51 27 56 0.482 0.067 0.442 0.054 0.391 0.039

43 52 0 0 - - 0.382 0.089 0.382 0.040

44 53 0 0 - - 0.372 0.090 0.372 0.042

45 54 0 0 - - 0.361 0.090 0.361 0.044

46 55 0 0 - - 0.349 0.091 0.349 0.045

47 56 0 0 - - 0.336 0.091 0.336 0.047

48 57 30 126 0.238 0.038 0.258 0.036 0.320 0.049

49 58 0 0 - - 0.304 0.091 0.304 0.051

50 59 0 0 - - 0.283 0.092 0.283 0.054

51 60 16 62 0.258 0.056 0.253 0.048 0.250 0.057
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Table 5: Sensitivity Analysis

n0, λ0 E(ρ̄) std(ρ̄) E(ζ) std(ζ) τ W

10, 11 0.658 0.118 0.725 0.144 0.054 0.760

30, 31 0.634 0.125 0.723 0.160 0.159 0.819

50, 51 0.623 0.126 0.725 0.157 0.189 0.845

70, 71 0.615 0.134 0.721 0.170 0.206 0.867

90, 91 0.605 0.135 0.733 0.160 0.187 0.883

110, 111 0.600 0.134 0.736 0.160 0.183 0.894

130, 131 0.592 0.138 0.742 0.160 0.201 0.908

70, 10 0.600 0.133 0.776 0.130 0.234 0.872

70, 30 0.608 0.132 0.747 0.145 0.218 0.867

70, 50 0.612 0.133 0.733 0.156 0.210 0.867

70, 90 0.613 0.132 0.729 0.158 0.208 0.867

70, 10 0.615 0.133 0.720 0.163 0.202 0.867

70, 30 0.617 0.132 0.719 0.167 0.201 0.864

10, 30 0.675 0.115 0.656 0.183 0.042 0.756

130, 10 0.576 0.141 0.792 0.127 0.229 0.916

n∗, n∗ + 1 0.610 0.130 0.733 0.158 0.194 0.873
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FIGURE 3: BETA APPROXIMATIONS
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