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SUMMARY

A simple procedure is proposed for exact computation to smooth Bayesian estimates
for logistic regression functions, when these are not constrained to lie on a fitted regression
surface. Exact finite sample inferences and predictions are available, together with an exact
residual analysis. The prior distribution relates to O’Hagan’s assumptions for a normal
regression function. A global shrinkage parameter and local smoothness parameter can
be evaluated from the current data by hierarchical Bayesian procedures. Consideration of
the shrinkage parameter permits an overall check regarding a hypothesised regression
model. No optimisation technique is needed, since Monte Carlo simulations from indepen-
dent logistic distributions can be directly employed. The complexity of the computations
does not substantively increase with the dimensionality of the design space.

Some key words: Bayesian smoothing; Gaussian process; Hierarchical Bayes; Logistic distribution; Logistic
regression; Monte Carlo; Semiparametric.

1. LOGISTIC REGRESSION FUNCTIONS

Consider frequencies yy, ..., y,, which, given 6, ..., 6, possess independent binomial
distributions with respective probabilities, 6,,...,0,, and sample sizes, ny,...,n,.
Suppose that the logits a; = logit (6;) = log ; — log(1 — 6,) satisfy

a=at;) (=1,...,m), (1-1)

where ty,...,t, are specified design vectors in a design space D, and the real-valued
regression function «(t) is defined for all ¢t € D.
Also consider a linear hypothesis for «(t), and taking the form

Hy:a(t) = ao(t) = §/(1), (12)

where B is a p x 1 vector of unknown parameters, and ¢(t) = (#4(2), . . ., ¢,(¢)) is a specified
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vector of basis functions. Estimates will be developed for «(t), and for

exp {(t)}
" e )

The estimates for a(t) and 6(t) have the following properties.

(a) They are not constrained to lie on a fitted surface, but compromise between perfectly
fitting the data, and a surface fitted via a linear hypothesis. This is the concept of
‘global shrinkage’ towards a hypothesised model. See, for example, Leonard (1978).

(b) They are nevertheless infinitely differentiable, and sufficiently regular to be able to
predict 0(t) at further points in the design space D. This is the concept of ‘local
smoothness’ and will be created by the infinitely differentiable covariance kernel
introduced below.

Generalising Leonard (1972), we develop a hierarchical Bayesian methodology for
achieving objectives (a) and (b). Following the approaches of Silverman (1978) and
Leonard (1978) to density estimation, and of Blight & Ott (1975) and O’Hagan (1978)
to the smoothing of regression functions, it is assumed, in the prior assessment, that, given
p and a covariance kernel C, a(t) follows a Gaussian process with mean value function
ao(t) satisfying (1-2) and covariance kernel C(s, t), defined as o2K(s, t), for s, t € D, where

K(s,t) =exp{—y(s —t)Als — 1)}, (1-3)

with A a positive definite matrix. For simplicity, f is assumed to be uniformly distributed
over RP. The global shrinkage parameter 62, and local smoothness parameter y, can be
evaluated from the current data set via hierarchical Bayesian procedures.

We develop an exact analysis of the above model, using Monte Carlo techniques, without
using any iterative procedures for maximising likelihoods or posterior densities. An exact
residual analysis is also developed for investigating the linear hypothesis (1-2), providing
an alternative to approximate analyses recommended by Cox & Snell (1968), Cox (1970)
and Cook (1977). Furthermore, the marginal posterior density of o2 facilitates an overall
check of the validity of the hypothesised model.

O’Sullivan, Yandell & Raynor (1986) and Gu (1990) discuss elegant methods for smooth-
ing a(t) based upon splines, involving optimisation techniques for Bayesian posterior
modes, but do not attempt to deal with the concepts in (a) and (b) separately, since their
choice of null space is defined by their choices of covariance kernel, or to develop finite
sample inference procedures. They are however able to provide useful point estimates,
where a single smoothing parameter is chosen by generalised cross-validation.

2. BAYESIAN ANALYSIS

All distributions in this section are conditional on 62 and y. For any t € D, the conditional
distribution of «(t), given &,, = (a4, ..., a,) and B, is the same as the corresponding con-
ditional prior distribution, that is, normal with mean

a*(t) = ¢'(£)B + e*(1), (2:1)

and variance o?w*(t), where
w*(t) = K(1, ) — () K~ x(1), (22)
e*(t) =x'(t) K~ Y&, — XB), (2:3)

k(t)=(K(t, ty), ..., K(t, tp)). (24)
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Here K is the m x m matrix with (i, j)th element equal to K(t;, t;), and X is the m x p
matrix with (i, j)th element equal to ¢;(¢;). The corresponding conditional distribution of
the ‘parametric residual’

e(t)=a(t) — ¢ (t)B (25)

is normal with mean e*(t) and variance ow*(t).
Furthermore, the conditional posterior distribution of B, given &,,, is multivariate normal
with mean vector

B*@,)=(X'K'X)"'X'K~'&,, (26)
and covariance matrix ¢*D, where
D=(X'K~'Xx)™|, (27)
so that the posterior distibution of a(t), given &,,, is normal, with mean
&(t):={b'(t) + (1) Q} &, (2:3)
and variance o%d(t), where
a(t) = w*(t) + {¢'(1) — x(t) K™ "X }D{¢(t) — X 'K~ 'x(1)}, (29)
b'(t)=¢'(t)DX'K 1, (2-10)
Q=K '—-K X(X'K™'X)"'X'K~. (2-11)
Note that the posterior density of &,,, unconditional on S, is
(8| y) o U&n| y) exp{ — &, 08, /(26°)}, (2112)
where
l(&mly)ocexp{a”c;,,y— i n; log(1 +e°"‘)}. (2-13)
i=1

The likelihood (2:13) is proportional to the density of a proper distribution. Since the
second contribution to the product on the right-hand side of (2:12) is bounded above by
unity, the density (2:12) will remain proper. All posterior moments, given ¢ and y, if they
exist, and probabilities for a(t) and elements of B, may be computed by integrating the
corresponding quantities, when &,, is known, with respect to the posterior density in (2:12).
These integrations can be performed exactly, using the Monte Carlo techniques of § 3.
Similar techniques can be applied to the parametric residual e(t), in (2:5), since, given &,,,
this possesses a normal posterior density with mean

&(t)=x(1)Q4,, (2:14)
and variance 6°®*(t), where
a*(t) = K(t, t) — k'(t)Qk(t). (2:15)

An integrated likelihood may be obtained for ¢® and y by integrating out f from the
joint distribution of y, &, and B, giving the joint likelihood

l(@?, 7, &l y) oc (6?) 2P| K| ¥ X' K™ X |7 1(Gm| y) exp{ — 8,08,,/(20%)}.  (2:16)

A further integration with respect to &, yields the required integrated likelihood.
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3. HIERARCHICAL BAYESIAN PROCEDURES

Further to the assumptions of § 1, it is supposed, in the prior assessment, that 6> and
y are independent. Furthermore, it is assumed that vA/o? possesses a chi-squared distri-
bution with v degrees of freedom, and that p:=e~“%? possesses a beta distribution with
parameters a, and a,. Our prior distribution therefore requires the specification of five
prior parameters, v, 4, 4o, a; and a,.

Under the above prior assumptions, the joint distribution of p and &,, is

(P, O | y) oc p™ " H1 — p)*= 7 K| ¥ X 'K ™1 X |2 Q00) (G| ) (31)
where
Q&) = (vA + &,Qd,,) "2 +m=p), (32)
Consequently, the marginal posterior density of p is
n(ply)=cp™ N1 —py> K| FX'KT'X| P EXQ@,)} (0<p<l1),  (33)

where c is a constant of proportionality, and E* denotes expectation with respect to &,, =
(otg,...,0,) when, for i=1,...,m, the 6;=e*/(1 + e*) possess independent beta distri-
butions with respective parameters y; + 1 and n; —y; + 1. The last term in (3-3) can be
therefore evaluated by Monte Carlo simulations from the corresponding logistic distri-
butions for the a;, for any particular value of p. Then the proportionality constant ¢ can
be evaluated via a one-dimensional numerical integration with respect to p.
Furthermore, the posterior expectation given p of any transformation n = g(&,,) of &, is

| E*{g(En)QE)

and the unconditional posterior expectation of # is
1
E(nly) = J Enlp, y)n(p|y) dp. (35)
0

Similarly, the unconditional posterior expectation of a(¢) may be obtained by replacing
&, in (2-8) by its posterior expectation given p, as calculated via (3-4), and then averaging
the entire expression in (2-8) with respect to the density for p in (3-3).

The posterior variance of «(t) given p and &,, is

var {a(t)| p, &, ¥} = D(t)E(0°| p, &om, ¥), (36)

where @(t) is defined in (2-9). However, the posterior distribution given p and &, of
(vA + &,,08,,)/* is chi-squared with v + m — p degrees of freedom. Consequently,

v + &, 04, )

v+m—p—2 (37)

var {oc(t)lp, O y} = C?)(t) <

Therefore, the posterior variance of a(t) given only p is

VA + E(8, Qm|p, y) ) . . .
ytm—p—2 }+var[{b(t)+x(t)Q}amlp,y]- (38)

var{«(t)|p, ¥} =c?>(t){

The expectation and variance in (3-8) can be computed as for (3-4). The unconditional
posterior variance of a(t) may be found by averaging (3-8) with respect to the posterior
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density (3-3), and then adding the posterior variance of the posterior expectation of a(t)
given p, where the variance again refers to the posterior density (3:3).

Since the posterior distribution of «(t) given 62, p and 4, is normal, with mean &(¢) and
variance a2d(t), the joint posterior density of «(t) and &,, given p is

m{ot), Gl p, ¥} oc | K| 7*| X'K ™1 X | 21(@,,] y)
x [vA + {o(t) — &(t)} /1) + 8y, Q& ] 2O FmTPFD, (3-9)

It is consequently also possible to compute the posterior density of a(t), via simulations
for &, combined with numerical integrations for p. Similar procedures may be used to
compute the unconditional posterior mean and variance of the parametric residual (2:14).

4. NUMERICAL EXAMPLE

We consider a subset to the data previously analysed by Hasselblad, Stead & Crenson
(1980) concerning an experiment relating the mortality of mice to nitrogen dioxide expo-
sure (Larsen, Gardner & Coffin, 1979). The second column of Table 1 gives degree of
NO, exposure, the third the time of exposure in hours, the fourth the number of dead
mice, and the fifth the number of mice tested. Our analysis however uses log transforms
as the explanatory variables. Each explanatory variable was standardised by subtracting
the average, and dividing by the standard deviation.

The main effects model

o; =Po+ Pitin+ Pty (i=1,...,17) (41)

was fitted by maximum likelihood. The fit is slightly unsatisfactory, yielding x> = 30-9 on
14 degrees of freedom. The corresponding fit to the probability of death is plotted in
curves (A) of Fig. 1, as a function of time of exposure. Figures 1(a), (b) and (c) correspond
to the three different levels of NO,, 15, 3-5 and 7-0, respectively. They do not provide a
convincing fit to the corresponding observed proportions, which are represented by the
Crosses.

A multiplicative interaction model

;= Po+ Bitiy + Batia + Batutiy (i=1,...,17) (42)

fits much better, yielding y*> = 15-11 on 13 degrees of freedom. The corresponding fitted
probability of death is plotted against time as curves (C) of Fig. 1. The fit is now excellent.

Table 1. Mortality of mice exposed to NO,

Group t, t, y n Group t, y n

1 155 960 44 120 10 35 70 152 280
2 1'5 1680 37 80 11 35 140 55 80
3 1'5 3360 43 80 12 35 240 98 140
4 1'5 5040 35 60 13 35 480 121 160
5 35 05 29 100 14 70 05 52 120
6 35 10 53 200 15 7-0 10 62 120
7 35 20 13 40 16 7-0 15 61 120
8 35 30 75 200 17 70 20 8 120
9 35 50 23 40

t, degree of NO, exposure in ppm; t,, time of exposure in hours; y, number
of dead mice; n, number of mice tested.
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Fig. 1. Predictive probability of death against time for nitrogen dioxide exposure, NO,=1-5, 3-5 and 7-0.
(A) maximum likelihood, without interaction; (B) hierarchical Bayesian, without interaction; (C) maximum
likelihood, with interaction; (D) hierarchical Bayesian, with interaction. Crosses, observed proportions.
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For our hierarchical Bayesian analyses, the choices v=1=a,=a,; =a, =1 were made
for the prior parameters, with 4 in (1-3) the identity matrix. For brevity of presentation,
attention is confined to these particular choices.

We first took the main effects model (4:-1) to represent the hypothesised model (1-2).
The posterior mean value function of the probability of death, unconditional on ¢* and
v, is given by curves (B) of Fig. 1. This also provides predictive probabilities of death for
further mice, at the corresponding levels of NO, exposure, and time of exposure.

Note that, in each of Fig. 1(a), (b) and (c), the hierarchical Bayes curve (B) fits the data
very well, while still behaving in a smooth manner. This suggests that, even though our
first hierarchical Bayesian analysis does not assume a multiplicative interaction term, a
more general interaction structure can be effectively modelled by our semiparametric
procedure.

As a second hierarchical Bayesian analysis we used the multiplicative interaction model
(4-2) as the null model in (1-2). Curves (D) of Fig. 1(a), (b) and (c) provide the exact
posterior mean value function, unconditional on ¢* and y, of the probability of death.
Note that curve (D) of Fig. 1(c) assumes a particularly interesting form in attempting to
fit the data closely.

In our first hierarchical Bayesian analysis, without interaction, our exact posterior mean
vector (0-0080, 0-9301, 0-9852)" for B =(Bo, B1, B,)' somewhat smoothed the maximum
likelihood vector = (0-0108, 0-8891, 0-9902), to compensate for the uncertainty in the
choice of model. However, G, the exact posterior covariance matrix of f, and G,, the
estimated covariance matrix of f§, were respectively

0-04615 0-00515 0-00002 000211 —0-00010 —0-00014
G, = 000515 011738 0:09227 |, G,=| —0-00010 0-00628 0-00532 |.
0-00002 0-09227 0-10733 —0-00014 0-00532 0-00663

The matrix G, possesses substantially higher diagonal terms than G,. Hence, when the
null model is not well specified, our analysis compensates for this by telling us that we
know less about . This feature is unavailable from a maximum likelihood analysis. The
posterior means of f; and f, nevertheless fall 2715 and 3-:007 posterior standard errors
above zero, confirming that both explanatory variables should be included in the analysis.

Our second hierarchical Bayesian analysis, with interaction, yielded posterior mean
vector (0-1975, 08671, 1-1013, 0-1778)" for B =(Bo, B1, B2, B3), compared with the maxi-
mum likelihood vector f=(0-1577,0-:8902, 1-1043, 0-1759)". In particular the posterior
mean 0-1778 for the multiplicative interaction coefficient compares with a posterior stan-
dard deviation of 0-1775, so that the multiplicative interaction term should not obviously
be included. The exact posterior covariance matrix G, of f, not reported here, still inflates
the estimated covariance matrix G,, but the inflation is not quite as substantial as observed
for our first hierarchical Bayesian analysis.

Curves (A) and (B) in Fig. 2 describe the posterior densities for the local smoothness
parameter y, under two choices of null model described above. Note that curve (B) is
concentrated on lower values of y. Hence more local smoothing is suggested when an
interaction term is included in the null model. This attempts to compensate for the effects
of the global shrinkage towards a more complicated null model.

5. RESIDUAL ANALYSIS

The middle dotted curve in Fig. 3 denotes the exact posterior mean value function of
the parametric residual function (2-5) plotted against time, at the third level (NO, = 7) of
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Fig. 2. Posterior densities of smooth parameter y. (A) hierarchical
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Fig. 4. Posterior densities of global shrinkage parameter o2
(A) hierarchical Bayesian, without interaction; (B) hierarchical
Bayesian, with interaction.

nitrogen dioxide when the interaction term is absent in our null model. The two outer
dotted curves are two posterior standard deviations from the posterior mean. The dashed
curves in Fig. 3 represent similar functions when the interaction term is present in the null
model. The results indicate that, while a main effects model cannot be refuted, the multipli-
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cative interaction model is slightly superior. For example, the posterior mean value func-
tion of the parametric residual function is on the whole closer to zero when an interaction
term is included in the null model. Furthermore, the posterior standard errors of the
parametric residual function are not substantially increased by the inclusion of an inter-
action term.

Corresponding residual curves at the other two levels of NO, are not reported here.
They indicate similar conclusions regarding the slight preferability of the interaction model.
This conclusion is confirmed by the overall model checks provided by the curves in Fig. 4.
These provide the posterior densities of the global shrinkage parameter 6> when the null
model is (A) the main effects model, and (B) the multiplicative interaction model. Note
that curve (B) is slightly more concentrated towards zero. Overall, our hierarchical
Bayesian analysis is much less prepared than maximum likelihood methodology to dis-
tinguish between the two null models investigated here.
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