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ABSTRACT

This paper presents a new Laplacian approximation to the posterior density of 1 = g(0). It has
a simpler analytical form than that described by Leonard et al. (1989). The approximation derived
by Leonard et al. requires a conditional information matrix R,, to be positive definite for every
fixed . However, in many cases, not all R, are positive definite. In such cases, the computations
of their approximations fail, since the approximation cannot be normalized. However, the new
approximation may be modified so that the corresponding conditional information matrix can
be made positive definite for every fixed n. In addition, a Bayesian procedure for contingency-
table model checking is provided. An example of cross-classification between the educational
level of a wife and fertility-planning status of couples is used for explanation. Various Laplacian
approximations are computed and compared in this example and in an example of public school
expenditures in the context of Bayesian analysis of the multiparameter Fisher-Behrens problem.

RESUME

Cet article présente une nouvelle approximation laplacienne de la densité a posteriori de
n = g(0). Sa forme analytique est plus simple que celle décrite par Leonard et al. (1989).
L’approximation de Leonard et al. exige qu’une matrice d’information conditionnelle R,, soit
définie positive pour tout 1 fixé. Dans de nombreux cas, cependant, les R, ne sont pas toutes
définies positives. Le calcul de leur approximation échoue donc, car cette approximation est alors
impossible a normaliser. En revanche, I’approximation proposée ici peut étre modifiée de maniére a
ce que la matrice d’information conditionnelle soit définie positive pour tout n) fixé. Une procédure
bayésienne de vérification de modéles pour tableaux de fréquence est également présentée. Un
exemple de tri-croisé entre le niveau de scolarité de femmes mariées et les moyens de controle
des naissances privilégiés par leur couple sert a illustrer la méthodologie. Plusieurs approxima-
tions laplaciennes sont calculées et comparées dans cet exemple, ainsi que dans le contexte d’une
approche bayésienne du probléme de Fisher-Behrens multiparamétrique appliquée a 1’analyse des
dépenses d’une école du secteur public.

1. INTRODUCTION

Consider an n x 1 vector y' = (y1,...,y,) of observations with joint probability mass
or probability density function p(y|@) given an unknown p X 1 vector of parameters
07 = (6;,...,0,). Suppose that the parameter of interest, = g(®), is a function of 0.
The marginal posterior density of n given y, which requires a p-dimensional integration,
is desired for Bayesian inference. For each n, we define the parameter subspace ©,, C R,
where

6, =1{0:5(0)=m, forall ® € R’}
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is the target space for the integration. Hence, it is essential to make the approximation
as precise as possible for the @ in the target space ©,,. Leonard (1982) presented the
Laplacian approximation for the marginal posterior density of n in a special case, when
the parameter of interest, n = g(0) = 6y, is the kth coordinate of 0. Tierney and Kadane
(1986) discussed the asymptotic properties of such approximation. Leonard et al. (1989)
and Tierney et al. (1989) both derived the Laplacian approximations for more general 1
but in different degrees and with different approaches. Some other related approximations
are given by Wong and Li (1992) and Leonard et al. (1994).

Let 7t(0) be the prior density of 0. Leonard et al. (1989) approximated the posterior
density

(0 |y) oc p(y|0)m(0)

via a Taylor series expansion of L(0) = log (0 |y) about @,, where 8, conditionally
maximizes 7(0 |y) given that n = g(0). Neglecting cubic and higher-order terms in the
expansion provides the approximation 7*(0 |y) to 7(0 |y), where

log 7*(8 |y) = log my (ny) + (8 — 0,) — 3(6 — 6,)"R,(8 —6,), (1.1

in which
au(nly) = sup n(8y),
0O,

3 log (0 y)
hETe

b

0=0,

and R, defined as

8% log m(0 |y)
AL TT ’
8=0,
is the posterior information matrix of m(0[y) evaluated at @ = @,. The function

log 7*(0 |y) can also be expressed as
log x*(8y) = log mu(nly) + 1 ITR; 'l — 2(8 — 8)TR(0 —87)  (1.2)
by completing the square in (1.1), where
0 =0, +R; ',

The resulting posterior density n*(n|y) of m given y is then the density of n = g(9),
while @ possesses the density 7*(0 |y) defined in (1.2). That is,

w*(nly) oc Ty (nly) exp(3 TR, L)

. 1 * *
x lim — y exp{—3(0 —0,)"R(0 —0,)} 46, (1.3)

where the space
Qe={0:n<g@)<n+e}

is defined for nj € R and € > 0. If Ry, is positive definite, then 7*(ny) can be expressed

as
w*(Mly) o< 7 M[y)|Rn| "7 exp(3 UR; 1) f(|0;, R, (1.4)
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where the function f(n|p, C) is the density of n = g(0) when @ possesses a multivariate
normal distribution with mean vector p and covariance matrix C. It has been shown in
several numerical examples, by Leonard et al. (1989) and Hsu et al. (1991), that the
approximation (1.4) possesses excellent numerical accuracy, when compared with the
exact result.

In cases where the parameter of interest | = g(@) is a twice differentiable function
of @ for all @ € ©,, an alternative approximation is available. Note that for each n, the
conditional maximum @,, satisfies

dlogn(Bly) Bg(ﬂ)] —0 (1.5)
0=0.

a0 My 0
where A, is a Lagrange multiplier. Now consider a Taylor series expansion of
L(8) = log (8 y) — A {g(®) —n} = L(8) — Ay {g(8) —n} (1.6)

about ® = @,,. The linear term will vanish, because of (1.5). Therefore, neglecting cubic
and higher-order terms gives the second-order Taylor series approximation

log 7*(8|y) = log mu(n]y) — 3(8 — 0,)"Rq(8 —0,), (1.7)
where 5 ®)
9°g
=R, + . 1.8
il }"fl aooT 0=s, ( )

However, for 8 € ©,, L(0) reduces to log m(0 |y). Consequently (1.7) also provides a
second-order Taylor series approximation to log (0 |y), for ® € ©,,. Taking exponentials
provides an approximation of a simpler form

7*(0]y) oc wu(nly) exp{—%(o - on)TRn(G —-0,)}.

Consequently, whenever R, is positive definite, the marginal posterior density of n =
g(0) may be approximated by

7 (nly) o iy (|y)|Ra| "2 (1[0, R, (1.9)

where the f contribution is defined as for (1.4). The construction in (1.6) has enabled us
to greatly simplify the expression in (1.4), upon adjusting R, to the matrix in (1.8).

The main result of Tierney et al. (1989) is to approximate the posterior density of
n(nly) by

#* (nly) o T (n]y)|Ro| "2 (BTR;, by)H, (1.10)
where 0
b, = 0 ZACH] (1.11)
0=0,

They derived Equation (1.10) by making a transformation ¢ = ¢ (0) such that ¢ can
be partitioned as ¢ T = (g(0), d,) and then applying a Laplacian approximation for the
first coordinate 1 = g(0). As an alternative derivation of Equation (1.10), we can further
approximate the f contribution in Equation (1.9) by a normal density with mean g(8,)
and variance bTR,\ b,; then Equation (1.10) follows. Therefore, Equation (1.9) provides
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a closer connection between (1.4) of Leonard et al. (1989) and (1.10) of Tierney et al.
(1989). The approximation (1.10) is easier to use and possesses very good numerical
accuracy if the function g is linear or nearly linear, whereas the approximations (1.4)
and (1.9) possess better numerical accuracy for a more general functional form of g.

Note that a p-dimensional conditional maximization is needed for each n for all of the
Laplacian approximations discussed above. This maximization procedure is generally not
straightforward. However, it is far simpler than performing a p-dimensional numerical
integration. Many different approaches may be used to solve conditional maximization
problems. One approach is to fix a A,,; then the conditional maximum 6, may be obtained
by solving the equations in (1.5), utilizing numerical algorithms, such as standard Newton-
Raphson procedures; 1} = g(0y) may be calculated thereafter. The solution 8, is a local
maximum if

(a) the quantity 'R,z is greater than zero for all nonzero z such that z'b, = 0, where
b, is defined in (1.11), or

(b) the matrix Q = BT['{"B is positive definite, where B is any full-rank p X (p — 1)
matrix such that b;r‘B = 0 and may be constructed in various ways. For example, B may
be constructed as

_bZn/bln _b3n/b1n T _bpn/bln
1 0 e 0
B= 0 1 0 s (1.12)
0 0 1

where by, is the ith coordinate of b, fori =1, ...,p.

For the details of the above conditions, see for example Scales (1985). To find 0,, for
all necessary m, we may start with the posterior mode. The posterior mode may be
obtained by setting A, = 0. In this case, because the function g is not involved, only
an unconstrained maximization is needed, and the mode may be easily obtained. After
the posterior mode has been found, we may use it as the initial values to approach the
conditional maximum for a A, > 0, which is near zero. The posterior mode provides
a good guess for this conditional maximum, since A, is near zero. We may move A,
incrementally further away from its last point and use that previous maximum as the
initial value for the current conditional maximization. The same process may be used for
Ay < 0. The process may be continued until all needed n’s are found.

The following example presents a Bayesian procedure for contingency-table model
checking. The Laplacian approximations discussed above will be compared and discussed.

2. AN EXAMPLE BASED ON A QUASIINDEPENDENCE MODEL

Following Leonard and Novick (1986) and Leonard et al. (1989), consider an r X s
contingency table with cell counts y;, where i = 1,2,...,r and j = 1,2,...,s. Suppose
that y; are independent and each has a Poisson distribution with means 6; > 0. Also
suppose that the 8; are a priori independent and gamma-distributed with respective
means «;;/p and variances o;;/ 2. Therefore, the posteriors of 8 are independent and
gamma-distributed with respective means (a;; +y;;)/(B+1) and variances (a;+y;;) J(B+1)%
Hence the y; = log ;; possess joint posterior density

n(y|y) o exp (Z Z(yij + ;)Y — (B + 1)22@“’) ,

i=1 j=1 i=1 j=1
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which approaches the likelihood of iy as B and all of the a; tend to 0. This limiting
situation will be assumed in the example below, and we will therefore analyze the table
based on the likelihood function. Goodman (1964) described the following full-rank
log-linear interaction model:

log 6; = n+ A7 +)\f + N3P

ij oo

i=12...,r, j=1,2,...,5, 2.1)

where p is the overall effect, A the ith row effect, A7 the jth column effect, and NP the
interaction effect for cell (i,j). Under regular side conditions, M}B can be represented as
a linear function of Y11, Y12,.-.,¥rs @S

)\.';;-B =Yi—Yii —YjtY-

(with a dot denoting averaging with respect to the subscript). The concept of quasi-
independence model was initiated by Goodman (1968). Commonly used models for
analyzing contingency tables such as the extreme-ends model, four-corners model, and
main-diagonal model are examples of the quasiindependence model. See Fienberg (1987),
Fingleton (1984) and Agresti (1990) for details. Let S be the subset of I = {(i,j) :
i =12,...,rand j = 1,2,...,5s} such that the row and column classifications are
quasiindependent in S. Therefore, the quasiindependence model can be written as

log 05 =w+M +M +MFs;,  i=1,2,...,r, j=1,2,...,5 (22

where
{ 0 if (i,))€Ss,
b = :
1 otherwise.

The parameter .

n=— 3 (== +1.), 23)

(i.j)es

where m is the number of elements in S, provides a measure of association for inves-
tigating whether the row and column classifications are quasiindependent for the subset
S, by comparing the models (2.1) and (2.2). Note that the independence model also be-
longs to (2.2), where S includes all of the cells in the table. The inference of n provides
an alternative to a goodness-of-fit test for the quasiindependence model. The posterior
density of n) given y can be fully described using Laplacian approximations. A Bayesian
inference of the quasiindependence model is therefore permitted.

The data on the cross-classification between educational level of wife and fertility-
planning status of couples discussed by Goodman and Kruskal (1954) are described in
Table 1. Intuitively, wives with the highest education should tend to plan more effectively
and those with the least education to plan less effectively. Therefore, a four-corners model
may be suitable for the analysis. The subset S here is the set which includes all cells
but the four corner cells (1, 1), (1,4), (3, 1) and (3, 4). Curves (a), (b) and (c) in Figure 1
represent the Laplacian approximations (1.4), (1.9) and (1.10) respectively. The histogram
(e) represents the exact results based upon 100,000 simulations. In each simulation, twelve
8;; were randomly chosen from independent gamma distributions, each with mean y;; and
variance y;;, and then a m was calculated as formulated in (2.3). It is not surprising that
curve (a) of the approximation (1.4) is the most accurate one and curve (b) of (1.9) is
more accurate than curve (c) of (1.10). While (1.4) is derived from L(0), the original
log-posterior density, (1.9) is derived from L(0) [L(0) plus an extra term], and (1.10)
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TaBLE 1: Cross-classification between educational level
of wife and fertility-planning status of couples.?

B

B> B3 By

A 102
A, 191
As 110

35 68 34
80 215 122
90 168 223

3 Key: A;: 1 year of college or more; Ay; 3 or 4 years
high school; A3: less than 3 years high school. By through
By, represent the range of effective planning of number and
spacing of children, with By as the most effective, and By

as the least effective.

Vol. 23, No. 4

60

40+

POSTERIOR DENSITY

20+

-

oTe
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o

FiGure 1:

T
0.15

Marginal posterior density of 1. (a), (b), (c), (¢) Laplacian approximations (1.4), (1.9) and
(1.10) and histogram (simulated from true distribution), respectively, when S includes all
but the four corner cells in Table 1. (d) Laplacian approximation (1.4), when S includes

all of the cells in Table 1.

is a further approximation to (1.9). Curve (d) represents the approximation (1.4) when
the four corner cells were also included in S, and shows that the independence model is

refuted and the four-corners (quasiindependence) model is not refuted.

Note that both R,, in (1.4) and R, in (1.9) and (1. 10) were positive definite for every
1 considered in this example. However, it is not always the case that those matrices are
positive definite. If those matrices are not positive definite for some n, the corresponding
approximation is not defined at that m, and the posterior density of n given y is not
obtainable, due to the failure to calculate the proportionality constant. A more general
approximation to remedy this deficiency is therefore necessary.
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3. A MORE GENERAL RESULT

For a given p we define

L(0) =log n(0]y) — A{g(8) —m} — 5 p{g(8) —m}? (3.1)
=L—3p{g(8)—n}"

Analogous to the derivation of the approximations in Section 1, we take a Taylor series
expansion of L(0) about the conditional maximum @,, which satisfies (1.5). Neglecting
cubic and higher-order terms in the expansion provides the approximation 7*(0 |y) to
7(0 |y), where

log #*(8y) = log my(mly) — %(0 - or\).rﬁn,p(0 —0y),

A PLO) . T (3.2)
Rnp = =007 0=, = Ry +pbyby,

and p is sufficiently large to make the matrices ﬁn,p positive definite. Note that the
first-order term in the expansion again vanished. That is,

_ [6 logn(8ly) . 9g(0) ag(8) -0
0=6

oL(0)

00

0=0,

because of Equation (1.5) and the constraint g(0,) = n. Also note that, for 8 € ©,, L(®)
reduces to log w(@]y). Consequently (3.2) also provides a second-order Taylor series
approximation to log 7(8 |y) for @ € ©,,. The existence of such p is guaranteed for each
given 7, and will be discussed in the theorem below. The resulting approximation to the
posterior density of 1 given y is therefore

A —

#*(ly) oc T Y[R p| 20y, RS ,), (3.3)

where the f contribution is defined as for (1.4).
The following lemma, taken from Avriel (1976), provides a useful tool to prove the
theorem below.

LeEmMA 3.1. Let u and v be continuous real functions on a compact set K C RP such
that v(z) > 0 for all z € K. Then u(z) > 0 whenever v(z) = 0 if and only if there exists
a number c* such that for all ¢ > c* one has

uiz)+cv(z)>0  forall z€K.

THeoREM 3.1. Suppose that the posterior density 7(0|y) and the parameter of interest
M = g(8) are both twice differentiable near the conditional maximum ©,, which maximizes
L(8) = log (8 |y) subject to g(8) = . We further assume that ©,, satisfies Equation
(1.5). Then there exists a p* such that Ry, is a positive definite matrix for all p > p*.

Proof. Suppose that 0,, conditionally maximizes log 7(0 |y) subject to g(8) = n and
satisfies (1.5). Then for all nonzero z in R, the Ry, defined in (1.8) satisfies the following
condition (a) described in Section 1:

2'Ryz>0  for all nonzero z such that z'b,, = 0.
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Now for all nonzero z € RP, we consider
2'Rp, oz = 2'Ryz + pz'byb]z.

The quantity sz.er;';z is nonnegative, and the term zTan is positive whenever z'b,, = 0
and hence sznan = 0. The theorem follows from the lemma on letting K = {z:z €
R?, 2z = 1}, u(z) = TRyz and v(z) = Tb,,bI]z for all unit vectors z and hence for all

nonzero vectors z. []

The existence of p* is therefore guaranteed. We make the following comments re-
garding the use of the approximations (1.4), (1.9), (1.10) and (3.3).

(a) If n = g(0) is a linear function of 8;,0,,...,0), then Ry, and Ry, are identical, and
so are the approximations (1.4), (1.9) and (1.10) if Ry, and Ry, are positive definite. If Ry,
is not positive definite for some 1, Equation (1.4) cannot be applied directly. However,
the integral in (1.3) does exist in this case, and the approximation can be obtained by
making a transformation (0;,0,,...,08,) — (1,0,,...,0,) in (1.3) before integration.
The same treatment may be used for (1.9). The modified versions of (1.3) and (1.9) are
analytically identical to the approximation (1.10). The approximation (3.3) is not actually
needed when g(@) is a linear function of 0.

(b) The following equations are equivalent:

atnly) =t = [ exp{log n(81y)} a0 (3.4)
=tim < [ _ xllog x(01y) ~ n{e(®) -} 40 (35)
=timy = | cxpllog m(01y) A {e(®) —n} ~ 1 p{g(®) —n}’] 40, (35)

M.

where Q) . is defined as for (1.3) and p is a fixed constant. The approximations (1.4), (1.9)
and (3.3) are the results when we neglect cubic and higher-order terms of the Taylor series
expansions of the exponents L(8) = log n(0|y), L(8) = log n(8|y) — M{g(0) — n}
and L(8) = log n(8y) — Ay{g(8) — 1} — 1 p{g(8) — 1} in (3.4), (3.5) and (3.6)
respectively. Therefore, (1.4), (1.9) and (3.3) all have similar accuracy. Note that L(9),
L(0) and L(®) are identical for all @ in the target space ©, but not identical in Q.
Obviously, (1.4) is the most accurate approximation, (1.9) is more accurate than further
approximated (1.10) (see also the example in Section 2), and the p in (3.3) should be
chosen as small as possible.

(c) There is no simple analytical form for searching for the smallest p. However, in
practice we may compute the conditional maximum @y, for every fixed n in a reasonably
large range [n;,my] then simply try a p and increase it until Ry, is positive definite for
every M € [N, nu]. The computation is straightforward and consumes only a little extra
time.

4. AN EXAMPLE OF THE MULTIPARAMETER FISHER-BEHRENS PROBLEM

The public school expenditures, per pupil, per state in five regions (Northeast, South-
east, South Central, North Central, and Mountain Pacific) of the United States in 1977
were reported by Snedecor and Cochran (1989). The number of states, mean and variance
for each of the five regions are summarized in Table 2.
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TABLE 2: Public school expenditure data (in $1000).

South North Mountain
Northeast Southeast Central Central Pacific
Number of states 10 7 9 11 11
Mean 1.763 1.330 1.179 1.563 1.507
Variance 0.1240 0.0335 0.0057 0.0448 0.0404

Consider the multiparameter Fisher-Behrens problem discussed by Leonard et al.
(1994). Let y;; denote the public school expenditure per pupil of the jth state within the
ith region. Given 8y,...,8s5 and ¢y, ..., ¢s, y; are independent and normally distributed,
with respective means 0; and variances ¢; (i = 1,...,5,j = 1,...,n;), where n; is the
number of states in the ith region. Assume that the 0; and log variance o; = log ¢;
are a priori independent, and each is uniformly distributed over the real line. Then the
posterior density of @ given y is the product of five independent ¢-densities of form

5
(8 I)') x l_[{S,2 +n;(6; _)—,i)Z}—n,v/z,

i=1

where § is the sample mean, and S? is the sum of squares within region i. We consider
the Lagrangian

5
L =3~ 10857 + m(® — 507} — ha{2(8) ).
i=1

For each given A, the conditional maximum @,, can be obtained by solving the equations

oL n2(0; — y;) og
[ . Sl S AL A - = f .=1,..., ) .
30 S2+m(0; — i) a0, ~ % for i > 1)

and n = g(0y) can be calculated thereafter. The solution @, is a local maximum if the
matrix Q = B'R,B is positive definite, where B is defined in (1.12). However, it is only
guaranteed that Q is positive definite, or equivalently, zTan > 0 for all nonzero z such
that sz11 = 0, and not for all nonzero z € R3. Therefore, it is not guaranteed that R, or R,
is positive definite. As an example, we consider a linear functionn = g(0) = >";_, 4;6;

for given constants ay, .. .,as. The ith diagonal element of Ry, which is equivalent to Ry,
is calculated as
_ ni{S? — nmi(®: — 7))’}
{87 +ni(6: — 71y}

Tii

and is nonpositive whenever 5

S" -
— < (Om— 7). (42)
Equation (4.2) holds when n is sufficiently far from ©j = ):le a;y;. In such a case, 0;,
is much greater than y; for some i, while S? /n; remains constant for every ).

Two parameters of interest are considered in this paper. They are:

(@ M. =06;— }(92+92 +03+0,), a linear function of @, which represents the difference
in public school expenditures between the states in the Northeast region and states in
other regions;
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Figure 2: Marginal posterior density of m,. (a) Laplacian approximations (1.10) and modified

versions of approximations (1.4) and (1.9). (b) Single z-density with first four moments

all correct. (c) Histogram, simulated from true distribution. (d) Lines indicating the lower
and upper bounds to which the Laplacian approximations (1.4) and (1.9) can reach.

®) np = Ef=,(6i —0)?, a nonlinear function of @, which represents the corrected sum
of squares in the context of one-way analysis of variance, where 6 = %(61 +05403+04+05).

Note that in Equation (4.1), for each given A, five quadratics need to be solved for
g(9) =1, in (a) and five cubics for g(8) = n, in (b). There is more than one solution
to Equation (4.1). Caution should be taken so that the conditional maxima are used rather
than any other solutions.

Curve (a) of Figure 2 describes the Laplacian approximation (1.10) and the modified
versions of the approximations (1.4) and (1.9) [see comment (a) in Section 3] to the
posterior density of 1, given y. Curve (b) is a ¢-density with all the first four moments
correct. Histogram (c) represents the exact posterior density based on 500,000 simulations.
In each simulation, a m, = 6; — (0 + 03 + 04 + 65)/4 was calculated based on a set of
0 generated from five independent ¢-distributions. Two lines (d) indicate the lower and
upper bounds (0.023 and 0.714) which the unmodified Laplacian approximations (1.4)
can reach. The approximated probability that m, < O obtained for the approximation
corresponding to curve (a) is 0.0054, which is remarkably close to the exact, computer-
simulated probability, 0.0053. This minute probability indicates that the public school
expenditures per pupil per state in the Northeast region were significantly higher than
those in other states.

Curve (a) in Figure 3 describes our generalized Laplacian density (3.3) to the posterior
density of m; given y with searched smallest p = 80 [see comment (c) in Section 3].
Histogram (b) represents the true posterior density of n, based on 500,000 simulations,
each simulated from five independent t-distributions. Curve (a) approximates the true
histogram extremely well, being centered about 0.2 and spread from 0.0 to 0.6; it
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Fiure 3: Marginal posterior density of m,. (a) Generalized Laplacian approximation (3.3). (b)
Histogram, simulated from true distribution. (c) Line indicating the upper bound to which
the Laplacian approximation (1.4) can reach.

indicates that the public school expenditures per pupil per state were not the same
for all of the five regions. Line (c) indicates the upper bound (about m, = 0.386)
below which the matrix Ry, is still positive definite and to which the approximation
(1.4) can reach.
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