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Bayesian Marginal Inference
TOM LEONARD, JOHN S. J. HSU, and KAM-WAH TSUI*

A method is proposed for approximating the marginal posterior density of a continuous function of several unknown parameters,
thus permitting inferences about any parameter of interest for nonlinear models when the sample size is finite. Possibly tedious
numerical integrations are replaced by conditional maximizations, which are shown to be quite accurate in a number of special
cases. There are similarities with the profile likelihood ideas originated by Kalbfleisch and Sprott (1970), and the method is
contrasted with a Laplacian approximation recommended by Kass, Tierney, and Kadane (1988, in press), referred to here as
the “KTK procedure.” The methods are used to approximate the marginal posterior densities of the log-linear interaction
effects and an overall measure of association in a two-way contingency table. Snee’s (1974) hair/eye color data are reanalyzed,
and adjustments are proposed to Goodman’s (1964) analysis for the full-rank interaction model. Another application concerns
marginalization problems for a discrete p-parameter exponential family distribution, and inferences are considered for the
probability of a zero count.

KEY WORDS: Contingency table; Discrete exponential family; Interaction effect; Marginal posterior density; Measure of

association; Laplace’s method; Profile likelihood; Saddle-point accuracy; Zero count.

1. DESCRIPTION OF PROBLEM

Bayesian methodology provides a general paradigm for
inference regarding any function of the unknown param-
eters in nonlinear models, even when the sample size is
finite, and whether or not prior information is available.
The complex computations required, however, for exact
marginal posterior densities appear to reduce the availa-
bility of this approach to applied statisticians. In this article
we show that marginal posterior densities can be approx-
imated in many situations via easily accessible conditional
maximization procedures. Our aim is to emphasize Bayes-
ian marginal inference as one of the few convincing applied
approaches to the analysis of nonlinear models, and
thereby to broaden the type of nonlinear model that may
conveniently be analyzed.

Consider an n X 1 vector y of observations with joint
density or probability mass function

p(y|®), yER,OER?, (1.1)

given an unknown p X 1 vector of parameters 6 = (6,
., 6,)T that possesses a positive prior density 7(0) for

0 € RP. Assume that it is required to approximate the

marginal posterior density n(y | y) of a parameter of in-

terest
n=g@®0), n€EQCRH, (1.2)

where g is a continuous real-valued function on R”. In

many situations it will be virtually impossible to perform

the tedious (p — 1)-dimensional numerical integrations
for computing the exact density

n(n|y) = limy= | n(0]y)do, n€Q, (1.3)
0 D
where D denotes the region
D =D(n,y) =1{0:n=g®) <n+3 (14
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and

n@|y) <=(0)p(y|6), 8€ER”, (1.5)

denotes the posterior density of 0.

In some situations, such as when 6, . . . , 6, are a pos-
teriori independent, it may be possible to compute the
exact density of # by computer simulations. A good ap-
proximation may, however, still be more useful in terms
of shorter computer time. In this spirit Kass, Tierney, and
Kadane (1988, in press) and Tierney, Kass, and Kadane
(1988) proposed the elegant approximation

a(n | y) < mu(n | )/ [IR,[*(b7R;D,)'?],  (1.6)
where
mu(n|y) = sup n(0]y), (1.7)
0:2(0)=1
b, = 3g(0,)/90,, (1.8)
R, = & log 7(0 | y)/9(007)mo,,  (1.9)

and @, conditionally maximizes (1.5) with respect to 0 for
each fixed 7. Theorem 1 of Tierney et al. (1988) refers to
regularity conditions that require six times continuous dif-
ferentiability of the transformation in (1.2), within partic-
ular regions that remain fixed as n — . Since first
derivatives of g(0) appear in the denominator of (1.6),
zero derivatives are likely to cause a problem. Many useful
nonlinear transformations possess zero first derivatives for

‘some 0.

We will refer to (1.6)—(1.9) as defining the “KTK pro-
cedure.” The quadratic term in the denominator of (1.6)
is included to slightly extend a suggestion made by Leon-
ard (1982), Leonard and Novick (1986), and Tierney and
Kadane (1986), which works well, but mainly in the special
cases where n = 6, for some j, or where # is a linear
transformation of 0. The numerical integrations in (1.3)
are replaced by conditional maximizations, which can
often be completed in straightforward fashion by using
standard Newton-Raphson procedures, employing a hill-
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climbing package, or using the general algorithms devel-
oped at the University of Minnesota by Luke Tierney (see
Tierney, Kass, and Kadane 1987).

Kass et al. (1988) justified (1.6) primarily by asymptotic
(n — ) theory similar to Laplace’s (see, e.g., De Bruijn
1970). They showed that, under fairly general regularity
conditions, (1.6) differs from the exact posterior density
by a term behaving like O(n~') times the true density.
Under their regularity conditions, n~! log #(0 | y) con-
verges, as n — %, to a twice differentiable function U(9).
Tierney et al. (1988) discussed the ‘‘saddle-point accuracy”
of this procedure.

In the next four sections we will see that the KTK pro-
cedure is open to further development in some situations
when 7 is finite and g(@) is a nonlinear transformation.
Furthermore, although straightforward modifications may
be available when p is small, these are less obvious when
p is large. Although the KTK procedure is well formulated
in asymptotic situations as n — %, we can find no reason-
ably general justification in the literature for this proce-
dure when n is finite, unless (1.2) is linear (see Comment
1 of Section 3) or approximately linear. In particular,
(1.6) is likely to perform less well in situations where the
first derivatives of (1.2) are close to 0 in regions of mod-
erate posterior probability. This problem is illustrated in
the next section.

2. EXAMPLES OF THE KTK PROCEDURE

Consider a very simple situation where p = 1 and the
posterior density of the single parameter 6 takes the beta-
logistic form

n(0]y) = n,(6)
_ I'(n)
- T()T(r - y)
—0 < f < oo,

exp{fy}/(1 + €%,

i<yn<1, (21

which arises, for example, in the Bayesian analysis of the
logistic parameter 6 of the binomial distribution.
Consider the two-to-one transformation

n=g(6) = 6. 2.2)
Under the choice in (2.2) the exact posterior density of
nis

1
n(n |y) = 507""m ') + 307 m, (= 1'"),

N

0<p<owo, (2.3)

whereas the KTK approximation (1.6) is
fi(n |y) & n~'"m,(n'"?), 2.4)

which omits the extra term in (2.3) needed for a two-to-
one transformation. Although the first term on the right
side of (2.3) will predominate when » is large, the second
term will noticeably contribute when # is finite, unless the
posterior probability, that § < 0, is negligible. A parallel
result is, for example, available for the two-to-one entropy
transformationn = ¢ log ¢ + (1 — ¢)log(1 — ¢), where

0<pg <o,
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¢ = €°/(1 + €. There are substantial numerical differ-
ences between the corresponding cumulative distribution
functions for sample sizes as high as » = 100; numerical
comparisons were described by Hsu, Leonard, and Tsui
(1988). Whenever 7 in (2.2) is close to 0, the derivative
on/30 = 20 will be close to 0 (see discussion at the end
of Sec. 1).

Similar examples, omitting possibly important terms,
are available in a spectrum of single-parameter situations
when the transformation # = g(6) is many-to-one. An
example, when p = 2, may be constructed when the pos-
terior density of a normal mean 0 and log-variance a takes
the form

(0, a|y)
LS exp{—% on — %Sze‘“ - %ne‘“(@ - 7)2},
—oo<0<oo,. —o< a<o (2.5

where §2 > 0. In this case the exact posterior density of
n = sin 0 is

a(n|y) < > [S? + nfsin-i(y) + 2kn — y)-W2n

k=—o

X |cos(sin~'(n) + k)|"1, (2.6)

where sin~! (1) denotes the value of § € (0, ) for which
n = sin 6. However, (1.6) now reduces to

iy | y) « [$% + n{sin~(y) + 2k,m — yp] -
X |cos(sin~'(n) + k,)|7', (2.7)

where k, is the integer minimizing [sin~!(y) + 2k,x — ¥|.
Infinitely many possibly important terms from the exact
density (2.6) are now omitted, and the transformation has
derivatives close to 0 at many points.

Consider next the multiparameter situation where 6,,
..., 0, are a posteriori independent and each has been
suitably transformed to possess a standard normal distri-
bution. Then the KTK approximation (1.6) should not be
applied to the transformation

p
n=> 6
i=1

since #n possesses derivatives close to 0 at many points.
Approximation (1.6) is now a chi-squared distribution with
1 df, and the exact answer is chi-squared with p df. The
deviations of (1.6) from the exact answer, therefore, com-
pound themselves as the dimensionality increases.

(2.8)

3. AN ALTERNATIVE MARGINALIZATION
PROCEDURE

Under fairly general regularity conditions, we may ap-
proximate the posterior density #(0 | y) in (1.5), for values
of @ lying in the region D in (1.4), via a Taylor series
expansion of log 7(@ | y) about the conditional maximum
0, of 0, given that » = g(8). Note that 8, always lies in
D, which is the region that should be considered when
performing the integrations in (1.3). Neglecting cubic and
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higher terms in this expansion provides the approximation
n*(0 | y) to z(0 | y), where

log 7*(0 | y) = log nu(n | y)
+ 176 - 0,) — %6 — 6,)"R,(6 — 6,) (3.1)

with
= 9 log n(8 | y)/00 |o=o,,

and 7y (7 | y) and R, defined in (1.7) and (1.9).

Note that R, is the posterior information matrix of 0,
evaluated at the conditional maximum 6 = @,. Our
method can only be applied if R, exists and is positive
definite for all values of #. The approximation in (3.1) is
recommended in situations where the unconditional pos-
terior distribution of @ is initially judged to be not too far
from multivariate normal; suitable transformations such
as log or logit may facilitate this.

Under the approximation in (3.1), the 1ntegrat10ns in
(1.3) can be performed explicitly over the region D, and
the marginal posterior density of # reduces, after some
rearrangement, to

n*(n | y) « mu(n | y)IR,| -1
1
X exp{i l,,TR,,“l,,}f(;y | 6, R

(3.2)

n€Q, (3.3)

where the constant of proportionality may be calculated
via a one-dimensional numerical integration over € (Q,

6, =0, + R, (3.4
and f(n | w, C) denotes the density of # = g() when 0
possesses a multivariate normal distribution with mean
vector p and covariance matrix C. All terms on the right
side of (3.3) are important numerically. In particular, the
density f should either be obtained analytically, approx-
imated using further techniques, or perhaps calculated by
computer simulation, whichever is easiest for the user in
special cases. For example, note the following comments.

1. Ify = a’@is alinear transformation, f is just a normal
density with mean a”p. and variance a’Ca. In this special
case our suggestion (3.3) and the KTK approximation
(1.6) are both algebraically equivalent to the Leonard
(1982) Laplacian approximation.

2. If instead n = 0TA@, with A denoting a p X p pos-
itive-semidefinite matrix of constants, then the exact f is
the density of a linear combination of independent non-
central chi-squared variates. For many such linear com-
binations, however, a gamma approximation with correct
mean p’Ap + tr(CA) and variance 2 tr(CA)? +
4pnTACAp is reasonable.

3. If n is the rth largest of 6;, . . . , 6,, then f is the
density of the corresponding order statistic of a multi-
variate normal distribution.

4. In situations where 7(0 | y) is so complex that it is
inefficient to simulate z(z | y) based upon random reali-
zations from 7(8 | y), it may be easier to simulate f(y | .,
C) based upon random realizations from a multivariate

1053

normal distribution. Hence all of the terms in (3.3) may
be usefully calculated in a wide variety of complex situa-
tions.

5. In the single-parameter situation of Section 2, we
have, using the correct Jacobian transformation proce-
dure,

flnlu, ©) = dn7""Wpa(u, C) + $n712¥ _n(y, C),

0<pyp<omo, (3.5

where Wy(u, C) denotes a normal density for § with mean
u and variance C. The extra terms in (3.3) then provide
a close approximation to the exact density (2.3), as dem-
onstrated numerically by Hsu et al. (1988), in terms of the
cumulative distribution function. For all other transfor-
mations considered in Section 2, it is possible to similarly
incorporate the correct Jacobian transformation proce-
dure into the approximation. For the multiparameter ex-
ample, discussed in the penultimate paragraph of Section
2, our method gives the exact chi-squared distribution with
p df (in this situation the choice of @, is not unique, but
our method is exact for any possible choice).

Using theory parallel to that of Kass et al. (1988) it is
possible to show that, under regularity conditions similar
to those stated in their paper, the error term of (3.3) tends
as n — o to O(n~'?) times the true density. Cubic error
terms that vanish under the KTK justification of (1.6) do
not vanish when integrating over the region (1.4) for our
alternative in (3.3). Our procedure, therefore, appears to
possess asymptotic properties inferior to KTK. By includ-
ing the f contribution to (3.3), however, we avoid the
omission of terms that may be large when # is finite.

Note that the approximation in (3.3) is well defined even
when the transformation # = g(0) is nondifferentiable, or
differentiable with zero derivatives. Our approach is some-
what more tedious to apply than KTK, since careful at-
tention needs to be paid to our f contribution, but we wish
our approach to work well for finite » and many-to-one
transformations (whether or not these are differentiable).
As Tierney et al. (1988, sec. 4) implied, there is a trade-
off between the complexity of the procedure employed
and the potential accuracy of the results.

Our method provides an alternative to Bayesian ver-
sions of Edgeworth expansions (e.g., Johnson and Ladalla
1979; Zellner and Rossi 1984), based upon unconditional
maximization. In many applications, the approximation in
(3.3) will suffice, without further terms, since a conditional
maximization has been employed, permitting greater ac-
curacy in regions of interest.

The approximation in (3.3) is related to the profile like-
lihood ideas of Kalbfleisch and Sprott (1970), who also
advocated marginalization based upon conditional max-
imization. If the prior distribution for @ is taken to be
uniform over R?, then (3.3) could be interpreted as an
“integrated likelihood” for #. Our approach is, therefore,
related to the likelihood philosophy.

4. TWO-WAY CONTINGENCY TABLES

Following Leonard (1977) and Leonard and Novick
(1986), consider an r X s contingency table where the cell
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counts{y;:i=1,...,r;j=1,...,s}are taken to be
independent and Poisson distributed, given corresponding
cellmeansof {6;:i =1,...,rj=1,...,s} If the §;

are a priori independent and gamma distributed with re-
spective means «;;/ff and variances «;/f, then the y; =
log 6;; possess joint posterior density

n(y|y) « CXP{Z (yij + )y — (B + 1) 2 exP()’ij)},

Y= {?’ij} ER", (41)

which approaches the likelihood of the y; as # and all of
the a; tend to 0. This limiting situation will be assumed
in our practical examples, and we will, therefore, effec-
tively marginalize the likelihood function.

Important parameters of interest include the linear
transformations (see Comment 1 of Sec. 3)

ME=yi—y — v+,

i=1,...,r j=1,...,s (42

(with the dot notation denoting average with respect to
that subscript), which denote the interaction effects for
the rs cells under Goodman’s (1964) full-rank log-linear
interaction model, and the many-to-one nonlinear trans-
formation

m=2 (v = n = v+ n.YIrs, (4.3)
y

which provides an overall measure of association recom-

mended by Altham (1970) for investigating independence

of rows and columns in the r X s table. The usual inde-

pendence model occurs when # = 0, so each of the in-

teraction effects in (4.2) is 0.

The marginal posterior density of the linear transfor-
mation 7 = A% may be approximated for each (i, j) by
application of (3.3) or (1.6) to the joint density (4.1),
following Comment 1 of Section 3. For technical details
of the conditional maximization, see Leonard and Novick
(1986, p. 46). Note that this is simpler than the hierarchical
prior techniques proposed by Leonard and Novick (1986,
p. 44). Hsu et al. (1988) reported comparisons of our
approximations, based on (3.3) or (1.6) with the exact
curves, for a series of 2 X 2 tables and showed that the
approximations are virtually identical, to within three sig-
nificant digits, of the exact results. For example, Fisher
(1935) reported cell counts of 2, 15, 10, and 3 for a set of
criminal twin data. For these data, (3.3) was accurate,
similar to procedures proposed by Barndorff-Nielsen and
Cox (1979), for which they reported “saddle-point accu-
racy.”

The hair/eye color data introduced by Snee (1974) are
described in Table 1. A key conclusion concerning the (2,
4)th cell was first suggested to us by John Wood; people
in the sample with blue eyes are about five times as likely
to possess blonde hair. Hsu et al. (1988) reported that
approximation (3.3) to the marginal posterior density of
n = 3¢ is extremely close to a histogram representing the
exact posterior density and, based upon 40,000 simula-
tions, form 16 independent log-gamma distributions [pos-
sessing joint-posterior density (4.1)]. The approximations
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Table 1. Cross-Classification of 592 Students According to Hair and
Eye Color

Black hair Brunette hair Red hair Blonde hair Total

Brown eyes 68 119 26 7 220
Blue eyes 20 84 17 94 215
Hazel eyes 15 54 14 10 93
Green eyes 5 29 14 16 64
Total 108 286 71 127 592

were similarly accurate for the posterior densities of the
interaction effects for all 16 cells in Table 1, though Lind-
ley’s (1964) normal approximation was only slightly less
accurate.

As the posterior distribution of A2f was almost com-
pletely concentrated on the positive part of the real line,
we can conclude that the interaction effect for this cell is
almost certainly positive. In general, we recommend an
applied assessment of the full posterior densities of all of
the interactions, taking into account posterior tail prob-
abilities, practical significance, and patterns across the ta-
ble. Our interaction/residual analysis, summarized in
Table 2, is intended as a practical diagnostic, helping the
user to decide on the next stage of his analysis (e.g., im-
mediate practical conclusions, collapsing to 2 X 2 tables,
or setting some of the interactions equal to 0). Our meth-
odology permits more precise finite sample inferences than
are, for example, available under asymptotic maximum
likelihood theory (Goodman 1964).

5. THE OVERALL MEASURE OF ASSOCIATION

Now consider applying (3.3) to approximate the mar-
ginal posterior density of the measure of association in
(4.3). This permits the user to make an overall inference
regarding the closeness of the data to the independence
model and, therefore, provides an alternative to a good-
ness-of-fit test.

Maximizing (4.1) subject to the constraint in (4.3) yields
the nonlinear equations

B+ l)eXp{Y§7)} =y; + a; — k,
X[Q@-rt—-—s1+ r“s‘l)yﬁ;’) - wl,
i=1,...

,h j=1,...,s, (51)

for the conditional maxima y{” of the y; given (4.3). Here
k, denotes a Lagrange multiplier, and

p =t 2 P s Y 90 - s X
k:k#i 8:8#j (k,8)#(i,j)

(5.2)

Table 2. Interaction Analysis for Eye/Hair Color Data

Black hair  Brunette hair  Red hair  Blonde hair
Brown eyes  +* (1.000) + (.989) 0 (648) —* (.000)
Blue eyes - (.012) - (.024) - (.001) +* (1.000)
Hazeleyes 0 (.717) 0f (.824) 0 (.654) -t (.077)
Green eyes — (.005) 0f (.121) + (973) + (.992)
NOTE: + denotes positive interaction; 0 denotes no interaction; — denotes negative

interaction. An * means that the interaction is very noticeable; a + means that the conclusion
regarding an interaction is unclear. The figures in parentheses denote our approximate posterior
probabilities that the interactions are positive.
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Equation (5.1) may be solved, for fixed ,u,,, using one-
dimensional Newton—Raphsons for each y ). Then cyclic
substitution on the 4;; in (5.2) will suffice for convergence.
For each k,, the corresponding # may be calculated from
(4.3), and this function may be inverted computationally
to express k, in terms of #. Then substitution of the y(")
for the correspondmg y; in (4.1) provides the maximized
posterior density 7y (7 | y). In the extreme right tail of this
function there are some slight problems, because an # may
yield two different solutions for the y(”) In this case, it is
best to choose the y maximizing (4. 1)

For the hair/eye color data, 7y(y | y) is described by
curve b of Figure 1 and is too skewed to the right when
compared with the histogram representing the exact results
(based upon the same 40,000 simulations as described in
Sec. 3). Under this nonlinear, many-to-one, transforma-
tion the KTK adjustments in (1.6) are insufficient to dis-
tinguishably change 7,(y | y) in this particular case.
Therefore, KTK does not well approximate the true pos-
terior density of #, presumably because the problems
highlighted in Section 2, for example, surrounding the
transformation in (2.8), become compounded as the di-
mensionality increases. Our suggestion in (3.3), however,
with the density f for # approximated by a gamma curve,
with correct first two moments (see Comment 2 of Sec.
3), leads to curve a of Figure 1. This is reassuringly close
to the simulated exact results.

Hsu et al. (1988) described a method for interpreting
the marginal density of 7. They also provided a further
example of the procedure described in this section, where
the KTK approximation is totally different from the exact
result, overheavily skewed to the right, and adjusts 7,,(y
| y) in an incorrect direction. It would appear that KTK
does not always fare well under the particular transfor-
mation (4.3).

In this particular situation our approximate analytic pro-
cedure is easier to apply than computer simulations, since
(a) this involves much less (about 70% less) computer time
and (b) the final result is already a smooth curve, rather
than a histogram requiring somewhat arbitrary smoothing.
In the more complicated situation described in Section 6,
a slower “importance sampling” procedure is needed to
simulate the exact posterior density. However, in some

5 -
4 | f?i:\‘
.| NS
N
. | \
Ol
N :
0.0 04 0.6 0.8

Figure 1. Posterior Densities and Histogram of Overall Measure of
Association for the Eye/Hair Color Data. The histogram is based on
40,000 observations generated from the true posterior distribution: (a)
——, our approximation; (b) ---, maximized posterior density and KTK
approximation.
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situations (e.g., research in progress concerning the pos-
terior density of the mean of a mixture of exponential
distributions), it is simpler to simulate rather than con-
ditionally maximize. Therefore, in any particular situation,
the user will need to make a practical judgment. In any
case, it is always important to check the accuracy of the
conditional maximization procedure, for example, by at
least simulating the first few posterior moments using the
method outlined in Section 6.

6. THE SEMIPARAMETRIC ESTIMATION OF A
DISCRETE DISTRIBUTION

In this section we consider a procedure for the semi-
parametric estimation of a discrete distribution concen-
trated on the integers 0,1, . . . ,m. Lety,,. . . ,y,denote
a random sample from a discrete probability distribution,
with probability mass function

p(y=j|0)=¢j’ j=0""?m? (61)
where multivariate logits y;, . . . , y, satisfying
¢ = eyz/zmj e 6.2)
h=0
are taken to possess the functional form
v=a+ 60+ 07+ + 6,7, p<m, (6.3)

with the a; and p specified and 6, . . .
known parameters.

When q; = log"C;, with "C; = m!/j!(m — j)!, and
6, = -+ = 6, = 0, this specification reduces to a binomial
distribution for each y;, with probability e?/(1 + %) and
number of trials m. With this choice of a;, (6.3) more
generally permits investigations of deviations from a bi-
nomial assumption, This model could, therefore, be used
to investigate reasonability of an assumption of simple
random sampling from a large population by n sample
surveyors, each questioning m people, with yes/no re-
sponses. Alternatively, with each g; set equal to 0 and both
p and m large, (6.3) permits an effectively nonparametric
fit to a discrete distribution. It would be possible to use
other basis functions, for example, B-splines or terms from
a Fourier series, instead of j, j2, . . ., j?, and still remain
within the discrete p-parameter exponential family.

Parameters of interest include the sampling probabilities
¢0> b1, - . ., O, each of which is a nonlinear many-to-
one function of ¢, ..., 6,. For ease of presentation,
attention is confined here to

, 8, denoting un-

n=q¢=cen / > expla, + 0ih + Ok + - + 0,h?},
h=0

6.4)

which represents the probability that any particular ob-
servation is 0. This probability is of particular interest in
machine component reliability situations where the m
components may not fail independently, or with equal
probability, and where ¢, is the probability that the ma-
chine does not fail (this event occurs when none of the m
components fail, and y;, . . ., y, denote the number of
component failures on n separate runs).
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If prior information is available, then a multivariate nor-
mal prior distribution for 6,, . . . , 6, could be employed.
In the absence of prior information, we assume a uniform
prior distribution for 6,, . . . , 6, over R?, in which case
the posterior density, if it exists, is the likelihood function.
That is,

n(0 | y) < n"exp{it; + O, + -+ + 0,1}, O € RP,
(6.5)
where 7 satisfies (6.4), and
t=>nj k=1,...,p, (6.6)
j=1

with n; representing the number of observations out of y;,
., ¥, that equal j.

It is straightforward to conditionally maximize the den-
sity in (6.5) with respectto ® = (6,, . . . , 6,)7, given the
constraint in (6.4). For each fixed #, solve the p + 1
equations

E expla, + 6;h + O,h* + -+ + O,h7} = e/ (6.7)
h=0

and

;0 h*exp{A + a, + O,h + 0,8 + - + O,h7} = 1,

k=1,...,p, (6.8)

with respect to ® = (6;, . .., 6,)7 and the quantity 4
(which is a function of the Lagrange multiplier). The so-
lution for @ provides the conditional maximum 6,,.

Hence, by including adjustment terms, we may readily
compute the KTK approximation (1.6) together with our
proposal in (3.3). The f contribution to (3.3), however,
demands careful attention. Note that when 0 has a mul-
tivariate normal distribution with mean vector p and co-
variance matrix C, it is possible to calculate all moments
of the contribution

m

¢ =¢0) = El expla, + 07¢,} (6.9)
to (6.4), where €, = (h, h?%, . . . , h*)T. For example, the
mean and variance of { are

(* = hil expla, + ple, + 3€fCe)} (6.10)
and
v* = hil kil exp{ah + a, + pl(e, + €)

1
+ - €fCe, + Ee[Cek} [exp(efCe;,) — 1]. (6.11)

1
2

Therefore, the distribution of { may be approximated,
within a suitable family, by requiring the first several mo-
ments to be correct. One possibility is to take ¢ to possess
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a lognormal distribution with means {* and variance v*.
Then the density f of # may be approximated via the
transformation n = e%/(e% + (). Alternatively, the den-
sity f of # in (6.4) could be simulated directly, based upon
random realizations for @ from a multivariate normal dis-
tribution with mean vector p and covariance matrix C.

It is still possible to simulate the exact posterior distri-
bution of # = ¢, in (6.4) under the complicated posterior
distribution of 8 in (6.5). Let w(0) denote the function of
0 defined by the right side of (6.5), where = #7(0) is the
expression on the right side of (6.4). Note that if the max-
imum likelihood vector & and likelihood information
matrix

_8°log w(8)

R = 9007

(6.12)
0=0
exist, then the posterior distribution in (6.5) is roughly
multivariate normal with mean vector @ and covariance
matrix R~'. Consider [ simulations 0, . . . , 0, from this
multivariate normal distribution. Then, using standard re-
sults for importance sampling, the kth posterior moment
of 7 is exactly

E(*|y) = lim ; [7(8,)w(8))/ ¥,(6, R™1)]

| X [}13 w(8))/ 4,0, R“)]_l, (6.13)

j=1

where ¥,(0, R™!) denotes our approximate multivariate
normal density for 0. See, for example, Rubinstein (1981).

It is possible to similarly compute the posterior cuamu-
lative distribution function of # by referring to the pos-
terior expectations of appropriate indicator functions. The
posterior density of # may, therefore, be closely approx-
imated, for example, by a histogram. (See Tanner and
Wong 1987.)

7. POSTERIOR INFERENCES FOR THE PROBABILITY
OF A ZERO COUNT

We now consider two examples of the methodology dis-
cussed in Section 6 for inferences about ¢,. Two hundred
observations were first randomly generated from a mixture
of two binomial distributions, each with sample size m =
10, where the binomial probability parameter was equal
to .2 with probability §, and equal to .7 with probability
%, yielding a true value of ¢, = .0358. The observed fre-
quencies of the integers 0, 1, 2, . . . , 10 were 8, 12, 17,
18, 12, 23, 27, 34, 31, 14, and 4, respectively.

These data may be closely fitted by the model in (6.3)
with p = 4 and a; = 0. For example, the maximum like-
lihood fit provides a value X? = 2.94 for the usual chi-
squared goodness-of-fit statistic, with 6 df and a maximum
likelihood estimate ¢, = .040 for ¢,, which perfectly fits
the observed relative frequency. The maximum likelihood
estimates for 6, 6,, 05, and 6, were 6, = 7.9, 0, = —34.0,
6; = 63.4, and §, = —38.2 with respective approximate
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standard errors 4.5, 18.4, 28.2, and 14.3, which use the
approximate covariance matrix R™! with R defined in
(6.12).

The histogram in Figure 2 represents 20,000 simulations
for the exact posterior density of ¢, using the importance
sampling procedure outlined at the end of Section 6 and
a uniform prior for @ = (6,, 6,, 6, 6,)T. Curve b normalizes
the maximized posterior density (1.7) for n = ¢, or, equiv-
alently, Kalbfleisch and Sprott’s (1970) profile likelihood,
to ensure that this integrates to unity. Curve a adjusts
curve b using our modified conditional maximization pro-
cedure outlined in Section 6. This involves the simplest
approximation described in Section 6 to the f contribution
to (3.3), based upon a lognormal distribution for the
expression in (6.9). Even with this further approximation,
curve a seems to be remarkably close to the exact posterior
density. However, the KTK curve ¢ adjusts curve b, based
on Kalbfleisch and Sprott’s (1970) idea, in an opposite
direction. Although the mode of curve a decreases ¢, =
.04 to ¢ = .0354, the mode of curve c lies at ¢ = .042.

Comparisons of the corresponding approximations to
the posterior mean, standard deviation, and coefficients
of skewness and kurtosis are described in the first four
rows of Table 3. The quantities in the second, third, and
fourth rows correspond to curves a, b, and c, respectively,
in Figure 2. Our approximation again fares well when
compared with the simulated exact results.

For our second example, 100 observations were ran-
domly generated from a mixture of two binomial distri-
butions, again with sample size m = 10, but where the
binomial probability parameter was equal to .1 with prob-
ability .25 and equal to .8 with probability .75, giving ¢,
= .0872. The observed frequencies of the integers 0, 1,
2,...,10 werenow 8,9, 6,1,1,1, 7, 13, 27, 18, 9, so
that an approach accommodating small counts seems de-
sirable.

With p = 4 and q; = 0, the maximum likelihood fit now
provides X? = 7.38 with 6 df and the maximum likelihood
estimate ¢, = .089 compares with an observed relative
frequency of .08. We computed the various approxima-
tions to the posterior density of ¢,, and the results were

35
30

25
20 }
15

0.0 0.02 0.04 0.06 0.10

Figure 2. Posterior Densities and Histogram of ¢, for the Binomial
Mixture Example. The histogram is based on 20,000 simulations for
exact posterior density using importance sampling: (a) —, our ap-
proximation; (b) -+, maximized posterior density; (c) ---, KTK approx-
imation.
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Table 3. Comparisons of Posterior Approximations for the
Probability of a Zero Count

Standard Coefficient of Coefficient of
Mean deviation  skewness kurtosis

First example

Exact (simulated) .0394 .0128 .659 .636
Our approximation .0395 .0126 .625 438
Normalized profile

likelihood .0436 .0132 .545 .233
KTK approximation .0464 .0135 496 .105

Second example

Exact (simulated) .0900 .0276 .555 435
Our approximation .0895  .0272 492 104
Normalized profile

likelihood 0972 .0277 455 -.140
KTK approximation .1026  .0281 341 -.130

similar in spirit to those described for the first example of
this section. For example, our approximation was again
much closer to the simulated exact posterior density than
either normalized profile likelihood or the KTK approx-
imation. We approximated the posterior mode to lie at
¢o = .081, when compared with the KTK value of ¢, =
.095. Further comparisons are described in the last four
rows of Table 3.

8. CONCLUDING REMARKS

The marginalization procedure described in Section 3
has worked well in practice in all examples that we have
considered so far, though some care needs to be taken in
special situations, and the conditions discussed in the sec-
ond paragraph of Section 3 should be seriously evaluated.
For example, Leonard, Tsui, and Hsu (in press) discussed
a problem concerning hyperparameters in hierarchical
models and instead recommended a single-dimensional
numerical integration, together with some conditional
maximizations. The implications of (3.3) for the analysis
of nonlinear models appear to be important. It is similarly
possible to approximate the predictive distributions of fu-
ture observations or statistics. Methods available for pre-
diction were reviewed by Bjornstad (in press) and Leonard
et al. (in press).

[Received January 1988. Revised April 1989.]
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