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Bayesian Methods for Variance Component Models

Li SUN, John S. J. Hsu, Irwin GUTTMAN, and Tom LEONARD

An exact Bayesian analysis can be performed for normal theory variance components models, using importance sampling. But
remarkably accurate approximations are available using the Laplacian T-approximation introduced by Leonard, Hsu, and Ritter.
Instead of maximizing the joint posterior density, conditional upon the parameter of interest, a device described by O’Hagan is
used first. The Bayesian estimators are compared to the Lindley—Stein shrinkage estimators and the Lindley-Smith joint modal
estimators. It is confirmed that joint modes can overcollapse toward prior hypotheses, when compared with more sensible Bayesian
procedures. This is referred to as a “collapsing phenomenon.” A numerical example from the one-way random-effects model is
considered, and the risks of the different estimators are simulated under a variety of loss functions. It is concluded that although
the Lindley-Stein estimator performs well, a full hierarchical Bayesian analysis performs at least equally well, while permitting
more detailed finite-sample inference regarding any parameter of interest.

KEY WORDS: Analysis of variance; Empirical Bayes; Hierarchical Bayes; Importance sampling; Joint mode; Laplacian T' ap-
proximation; Marginal mode; Maximum component loss; Risk function; Shrinkage estimator.

1. INTRODUCTION AND SUMMARY

Before the 1980s it was difficult to handle the computa-
tions for Bayesian variance components models, and indeed
many authors concentrated on calculating posterior modes,
using maximization techniques. With the advent of such
powerful techniques as importance sampling, Markov chain
iterations, and modern usages of Laplacian approximations,
as facilitated by the speed, memory, and flexibility of more
recent computer packages, it is now possible to provide de-
tailed finite-sample inference for many such models.

As indicated by Leonard, Hsu, and Ritter (1994), Markov
chain techniques (e.g., the Metropolis algorithm and Gibbs
sampler) should be reserved for those complicated mod-
els that cannot be handled well using importance sampling.
In this article we demonstrate that importance sampling
can suffice for variance components models. Nonetheless,
Laplacian techniques also become straightforward. These
techniques are remarkably accurate and do not consume
much computer time. .

In Section 2, a quite general formulation of variance
components models for normally distributed observations
is stated. In Section 3, the Laplacian T-approximation, in-
troduced by Leonard et al. (1994) is discussed. This is
preferred, in the current situation, to the Laplacian tech-
niques introduced by Leonard (1982), and Tierney and
Kadane (1986), owing to a side effect of the “collapsing phe-
nomenon” discussed later. In Section 4 a general Bayesian
analysis is outlined, and the Laplacian and importance sam-
pling techniques are developed in detail.

During the 1970s, joint posterior modes were quite popu-
lar for estimating the first-stage prior parameters. In Section
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5 a serious “collapsing phenomenon” is described, showing
that posterior modes should be used with extreme caution.
Our main alternative suggestions to joint posterior modes
are summaries of the marginal posterior densities of the
first-stage parameters, as approximated via the techniques
of Sections 3 and 4 or computed exactly using importance
sampling. These have frequency properties similar to those
of empirical Bayes estimators of the “Bayes—Stein” type
and to estimators proposed by O’Hagan (1976). The latter
involve a convenient substitution of the marginal posterior
modes of the variance components.

In Sections 6 and 7 the collapsing phenomenon is further
demonstrated by a consideration of frequency properties.
These can be expressed algebraically when the number of
first-stage parameters is large, and are calculated numeri-
cally when this number is finite.

In Section 8 the one-way random-effects model is consid-
ered in detail. We also consider the two-way random-effects
model and split-plot designs, but for brevity of presentation,
these models are not further investigated here.

In Section 9 the Laplacian approximations are validated
by numerical comparisons with the exact results. In Section
10 frequency properties are investigated under a variety of
loss functions, and in Section 11 some properties of “max-
imum component” loss are described.

Applications of these models include such diverse ar-
eas as the ozone layer (Reinsel and Tiao 1987), agricul-
tural trials (Searle, Casella, and McCullogh 1992), genetic
trait models in Animal Science (Foulley, Gianola, and Im
1990), psychometric models (Lord and Novick 1967), and
signal processing in electrical engineering (Brennan 1994;
Kalman 1960). An extensive literature relating to actuarial
science business, credibility theory, and Bayesian gradua-
tion includes work of Fortney and Miller (1987), Hickman
and Miller (1981), Miller and Fortney (1984), and Miller
and Hickman (1975).
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2. MODEL FORMULATION

Consider an M x 1 observation vector y, which is taken
to possess a multivariate normal distribution, conditional on
its mean vector

X0 =Ua + Z~ (1)

and covariance matrix ¢I,s. Here X = (U,Z) is a speci-
fied M x p design matrix, and 6 is a p x 1 vector of un-
known parameters. Furthermore, p = g0 + ¢1 + -+ + gs,
and the unknown @ can be partitioned as 6 = («
= (aT"Y]?a'Yg” e :'Yg‘)Ta where &, Y1,7Y2,---5,Ys A€ Qo
x 1,q1 x1,...,qs x 1 subvectors. Assume that o comprises
fixed effects and that ~;,~s,...,4s are vectors that are a
priori independent. The -, are assumed to be the param-
eters of primary interest. It is supposed that, «; possesses
a distribution that is multivariate normal with mean vec-
tor pje,, and covariance matrix 031, , where e, denotes
a gj x 1 vector of 1s and I, is the g; X g; identity matrix.
Then o, 71, ..., can be interpreted as “first-stage param-
eters.” Assume that ¢; > 3, for j = 1,...,s, so that the
02 can be identified from the current data, and meaning-
ful Bayes—Stein-type shrinkage estimators can be obtained
for the elements of the first-stage parameter vectors -;,
whenever proper distributions are assumed for the o7 in the
prior assessment. But if the uniform distributions, described
later, are assumed for the UJ?, then it is necessary to assume
that g; > 3 for j = 1,2,...,s, to ensure that the posterior
distribution, described in Section 4, adequately reflects the
random-effects assumptions.

This very general and flexible formulation covers a mul-
titude of special cases. Although unbalanced designs are
included in our general formulation, two simple balanced
designs are described as follows:

« One-way random-effects model. For j = 1,...,m
and k = 1,...,n, observations y;; have independent
normal distributions, conditional on 64, ...,6,,, with
means 6; and common variance ¢. Furthermore, the 6;
are a random sample from a normal distribution with
mean y and variance o2.

« Two-way random-effects model with interactions. For
it =1,....mj = 1,...,t and k = 1,...,n, ob-
servations y;;; have normal distributions, with means
0{4+07+6{ and variance ¢. Here it can be convenient
to regard the marginal effects 6/* and 0;3 as fixed effects

satisfying 1", 04 = Z;zl 0F =0, and to take the
interaction effects 0{}3 to constitute a random sample
from a normal distribution with mean y and variance
o2. This device, introduced by Laird (1978), permits
the reasonable estimation of just two variance compo-
nents, ¢ and o2. Appropriate linear transformations of
the marginal effects yield go = m + ¢ — 2 distinct fixed
effects and hence a special case of (1). Sun (1992) in-
stead regarded the marginal effects as random and then
estimated two further variance components. Under his
formulation, the X7 X matrix is singular; however, his
posterior distribution is still proper as a general condi-
tion discussed in Section 4 is satisfied.
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We may complete our prior assumptions in the more
general case by taking o, p1, ..., s, 0%,...,02, and ¢ to
be independent. For convenience, take o and the p; to be
uniformly distributed over their species of possible values.
Furthermore, assume the prior density

m(03) o (U?)_1/2("1‘+2)exp{—1/jgj/2z7]2 (0< cr? < 00)

for a]?. Here Cj‘ ! denotes the prior mean of the precision
aj_z and v; can be interpreted as a prior “sample size.” Note
that the special case v; = —2 and (; = 0 is of interest, be-
cause o? is then uniformly distributed over (0, co0) (Leonard
1976; Strawderman 1971). Finally, we take v{y/¢ to pos-
sess a chi-squared distribution with vy degrees of freedom.

Box and Tiao (1968) addressed the problem of drawing
inferences about elements of the -; in special cases. Other
special cases have been considered by Fong (1992), Hill
(1965), Reinsel (1985), and Reinsel and Tiao (1987). Here
we demonstrate how to draw inferences under the foregoing
very general formulation.

We will use the Laplacian 7' approximation (Leonard et
al. 1994). Exact results are calculated using importance
sampling (Geweke 1988, 1989; Leonard and Hsu 1992,
Zellner and Rossi 1984), which is a simple restatement of
straightforward Monte Carlo and involves independent sim-
ulations. It usually will be unnecessary to refer to the depen-
dent simulations of the Gibbs sampler (Gelfand and Smith
1990; George, Makov, and Smith 1994), and indeed this
technique should be reserved for more complicated hier-
archical Bayes models; for example, with nonnormal error
terms. Although it would be easy to describe a sequence
of conditional distributions that would facilitate the Gibbs
sampler in the current context, fast convergence of the im-
portance sampling is more easily assured, for example, via
the central limit theorem utilized by Geweke.

3. THE LAPLACIAN T-APPROXIMATION

Let 7, (8) be the posterior density of 8 = (61,...,60,)T
given data y, and let n = g¢(@) be the parameter of in-
terest. Leonard et al. (1994) introduced a Laplacian T-
approximation for the marginal posterior of 7 of the form

77;(77) X ITn|_1/277y(0n))‘;w/2f(77|wa a;;a Ty), (2)

to the marginal posterior density of n, where

w
Ty = 7~ Qu,
n (w+p))\n Q’]

Ap=1—(w+p—-1)7'11Q; ",

_ T
Q”_U"+w+p_1 1,17,
_ Ologmy(0)
l"] - FY) 6=0, ’ (3)
2
)= 0 logwg’(e) , @)
3(607) o,

0; = 6, +Q;'l,,
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and f(nlw,6y,T,) denotes the density of n = g(@) when
0 possesses a multivariate t distribution with w degrees of
freedom, mean vector 6;, and precision matrix T,. Here
0, represents some convenient approximation to the condi-
tional posterior mean vector of 8, given 7, and w should be
taken to roughly approximate the degrees of freedom of a
generalized multivariate ¢ approximation to the conditional
distribution of 8 given 7. :

When 6, is the conditional posterior mode vector of 6,
given 7, (2) reduces to the Laplacian approximation intro-
duced by Leonard (1982) and shown by Tierney and Kadane
(1986) and Leonard et al. (1989) to possess saddlepoint ac-
curacy and excellent finite-sample accuracy, in many spe-
cial cases. It was previously used for hierarchical models
by Kass and Steffey (1989).

But whenever the conditional posterior mode vector of
6, given 71, does not closely approximate the conditional
posterior mean vector, the alternative expression (2) can be
superior to the original Laplacian approximation, with a ju-
dicious choice of w. (See, e.g., a multiparameter Fisher—
Behrens model and the numerical example presented in
Leonard et al. 1994.)

In the special case where 7 = a0 is a linear combination
of the 6’s, the approximation (2) is equivalent to

7 (1) o< [T~ 21y ()N, P21, [w,270;, (T T Pa) 7.

5

Here t,(w, 1, 7) denotes a generalized ¢ density for 7, with
mean p, precision 7, and w degrees of freedom.

4. GENERAL BAYESIAN ANALYSIS

The model description in Section 2 implies assumptions
for @ of the following form. Let A6 possess, a priori and
given p and ¥, a multivariate normal distribution with mean
vector Gu and covariance matrix X. In the prior assess-
ment, we suppose that p is uniformly distributed over s-
dimensional Euclidean space. Here A is the appropriate
(p — go) x p matrix such that A8 consists of the last p — go
elements of @ and the first gy elements of @ (correspond-
ing to «) are uniformly distributed. Furthermore, G is the
appropriate (p — o) X s matrix, with a single unit entry
in each row and zeros elsewhere. Finally, ¥ is the appro-
priate (p — qo) X (p — qo) diagonal matrix, depending on
al,ag,...,as.

Consequently, the joint prior density of p and 6, given
3, is

m(u, 02) x exp [~ % (A - Gp)TZ"1(A0 - Gu)] .

Integrating out s, we find that the prior density of 8, given
3, is

7(0]%) exp{— % HTATRAG},

where

R=31,_, - GGT'Z'G)'GT|="t  (6)
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Consequently, the conditional posterior distribution of 8,
given ¢ and ¥, is multivariate normal, with mean vector

0 = ¢~

and covariance matrix

L 1XTX + ATRA) 1XTy @)

D= (¢ 'XTX + ATRA)!, 8)

where it is assumed that the inverse in (8) exists. If this is
not the case, then our analysis can be readily extended, us-
ing generalized inverses. But this condition is, for example,
satisfied by Sun’s formulation of two-way random effects
models, as discussed in Section 2. Furthermore, the poste-

rior density of ¢, and ¢%,...,02, is

ryv sy
7r(¢) Uf) . ')U.‘Szly)

mW(QS’U%,""Ug)l*(¢’0’%"",0’§|y), (9)

where the first contribution to the right side denotes the
prior density,

I*(¢,0%,..
% |GT2—1/2G|—1/2|¢—leX+ATRA|—1/2

L, 0lly) o 72D Y2

X exp{— % ¢ 15% — % ¢ 10TATRA
(p7'XTX + ATRA)—lexé} ,

and @ and S% denote the least squares vector of 8 and the
residual sum of squares.

Note that, the posterior density of 8 = (a,~v1,--.,7s)7,
unconditional on p and the variances, is the product of gen-
eralized multivariate t-densities

n(6ly) o< [volo + S& + (6 — 6)"XTX (0 — )]~ (o +M)/2
X H VJCJ +7g ( q; — leqje;F )7]-]‘(‘114‘!@—1)/2’
j=1

(10)

where the v’s and (’s were introduced in Section 2. The
question now arises as to how to approximate the uncon-
ditional posterior mean of elements of 6, or linear com-
binations thereof. Lindley (1971) and Leonard (1972), in
special cases, recommended maximizing (10) to find the un-
conditional posterior mode vector of 6. Lindley and Smith
(1972) recommended maximizing the joint posterior mode
vector of @ and the variance components. Efron and Morris
(1973) were the first to state that this can provide estimators
with quite inferior frequency properties. A related problem
is that the conditional posterior mode vector of 8, given
a”@ = 7, is unlikely to closely approximate the conditional
posterior mean vector of 6, given 7.

Following O’Hagan (1976), a more promising sugges-
tion is to replace ¢ and o%,...,02 in (8) and (9) by their
(marginal) posterior modes; that is, the values maximizing
the posterior density (10). We refer to O’Hagan’s suggestion
as 6. This is an estimator of the formal “Bayes—Stein” type
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and motivates us to suggest the following general methods
of analysis:

. Laplacian T approximations. Apply the general ap-
proximation (5) to the posterior density of any linear
transformation 7 = a”@ of the parameter vector 8.
Note that the posterior density of € conditional on the
variance components is maximized, subject to the con-
straint a’@ = n when 6 = 6,, where

0, = 6" + kDa, (11)

with

k = (aTDa)~!(n — aT@*), (12)
and 6* and D are defined in (7) and (8). We thus rec-
ommend initially approximating the conditional mean
vector of @, given only 7, by the 8,,, which replaces
0* in (11) and (12) by the O’Hagan estimator 6. Fur-
thermore, replace all variance components appearing in
D [see (6) and (8)] by corresponding values maximiz-
ing (9). The approximation (5) will then be different
from the ordinary Laplacian approximation introduced
by Leonard (1982). All of the details of this approxi-
mation, as described in Section 3, follow in straightfor-
ward fashion; for example, (3) and (4) relate to the first
derivatives and second derivatives, with respect to 6, of
the logarithm of the joint posterior density (10). Note
that the posterior means of the elements of 8 will no
longer assume weighted average forms of the Bayes—
Stein type.

Leonard et al. (1994) made two suggestions for
choosing w, and one of these is applied in Section 9.
This approximate procedure consumes much less com-
puter time as compared to exact procedures based on
importance sampling and was shown by Leonard et al.
to be remarkably accurate in the context of a multipa-
rameter Fisher—Behrens problem.

. Exact procedures (importance sampling). We recom-
mend importance sampling from a generalized mul-
tivariate ¢ approximation to the posterior density of
log ¢,log o2, ... ,logo?. The exact density can be ob-
tained from (9). Let & and A denote the posterior
mode vector and posterior information matrix of these
s + 1 parameters. Then the procedures described by
Leonard and Hsu (1992) may be used, by simulating
from a generalized multivariate ¢ distribution with w*
degrees of freedom, mean vector £, and precision ma-
trix w*A/(w* + s + 1). The degrees of freedom w*
should be chosen pragmatically, to ensure fast and
steady convergence, or adaptively, to reduce the stan-
dard error of simulation. Choosing w* equal to 20 or
30 often suffices. This permits exact computation of
the posterior expectation or distribution of any param-
eter of interest; for example, n = a”@. In some special
cases, variations on this scheme are available by tak-
ing logs of linear combinations of the variance compo-
nents and then using rejection methods to handle the
constraints on the new parameters.

Journal of the American Statistical Association, June 1996

5. THE COLLAPSING PHENOMENON

Consider the special case of the one-way random-effects
model of Section 2 where ¢ is known, y;; = y;, for
i=1,...,m,and n = 1. Let u and o2 be a priori inde-
pendent with y uniformly distributed over (—oo, c0) and
v(/a? possessing a chi-squared distribution with v degrees
of freedom. Then estimates for the 6; might be considered
that take the form

b= (67 i +67%y) /(7 +572), (13)

where

52 = [VC + Xm: (6; — y)2} / (v* +m), (14)

=1

with the dot notation denoting average with respect to that
subscript and possible choices of v* are discussed later (see,
for example, Scott and Smith 1969).

For example, v* = v — 1 leads to estimates maximizing
the joint posterior density of 61,...,0,,, and v* = v + 2
corresponds to maximizing the joint posterior density of
01,...,0m, u, and o2, with respect to all m + 2 parameters.
Note that (13) gives the posterior mean of 6;, given only
o2, but with o2 replaced by &2.

Any estimator of the form

62 = max{(m — ¢)718% — ¢,0}, (15)
with S2 = 3", (y; — §)?, will be consistent for o2, as
m — oo, with ¢ fixed, where this consistency refers to the
joint distribution of y,¥e,..., conditional only on x4 and
o2. Replacing 52 in (13) by 62 leads to the empirical Bayes
estimators

yi — D gy, —y.) if S2 > (m—c)e,
g if 2 < (m—c)o.

0* =

k2

(16)

Note that empirical Bayes estimators replace prior param-
eters by estimators based on the current data set, which are
themselves free from further prior assumptions. They con-
trast with hierarchical Bayes estimators, which place further
distributions on the (first-stage) prior parameters.

The estimator in (16) was first recommended by Lindley
(1962) as a refinement to Stein’s (1956) estimators. The iter-
ative procedures resulting from (13) and (14) may be com-
pared to techniques based on the EM algorithm (Dempster,
Laird, and Rubin 1977) for the marginal posterior modes
pn and o2, of p and o2. The EM algorithm yields the
equations s =y and

oy = {VC + Z (OM —y.)? +mf)M}/(v}'{4 +m),
i=1
17

where v%, = v +2,0M is found by replacing 52 in (13) by
2
oy, and

= (671 +02,) " (18)
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Note that (17) adjusts (14) via a term ¥, which is based on
the conditional posterior variance of each 6;, given u and
o2. Combining (13), (17), and (18) shows that o2, satisfies
the cubic equation

(Vi + m)osy = v¢ + 04,5 /(03 + ¢)?

+ meoi, /(0% + ¢). (19)
But combining (13) and (14) shows that 52 satisfies

(Vi + m)a? = v¢ +6452/(6% + ¢)2. (20)

Equations (19) and (20) can yield quite different numeri-
cal solutions. For example, 02, satisfying (19) has the same
limiting behavior, as m — oo, as 2 in (15), which justifies
the Lindley—Stein estimator (16). But as m — oo, (20) can
be reduced to either 52 = 0 or a quadratic in 2. By con-
sidering the solution of this quadratic, we find that 5% has
the same limiting behavior, as m — oo, as

L Im=18% — ¢+ \/ 1m-28% — m-152¢
5%, = if $2 > 4mg,
0 if S2 < 4mg.

@1

Note that for finite m, the expression in (21) provides the
exact solution to (14), when v = —=2,{ =0 and v* = v + 2.
Thus it is a joint modal estimator under a uniform prior
for o2.

Under our distributional assumptions for ¥, . . ., Ym, con-
ditional on y and o2 but not on 64,...,6,,, the estimators
62 and o2, are strongly consistent for 2, as m — oo, with
r,v, and ¢ fixed. But 2 and &2, are strongly consistent for
o2, as m — oo, with v and ¢ fixed where

> {%(02—¢)+%x/(a2+¢)(02—3¢) for o® > 3¢,

oy = )
0 for o° < 3¢.

Because o2 is always less than o2, this defines the collaps-
ing phenomenon. 1t is quite striking that when o2 < 3¢, 52
is strongly consistent for zero.

We emphasize these results by the following summary:
(@) 52 % 02 < 02 (m — 00), and (b) ¢%, 4 52 (m — 00),
where the convergence in distribution incorporates prior as-
sumptions regarding 61, ...,6,,.

6. MEAN SQUARED ERROR PROPERTIES

We now investigate the average mean squared er-
rors (MSE’s), conditional on 6y,...,60,, of the estimators
61,...,0,. We regard frequency properties as part of the
Bayesian paradigm. Bayesian concepts can be used to con-
struct meaningful procedures. But the latter can then be fur-
ther validated by considering their potential long-run per-
formance. One problem with MSE is that it averages the
components of loss. In our computations of Section 10, we
also refer to the risk function under the loss function

L(6,0) = jznllgjgm(éj —6;)% (22)

Sun (1992) proved the following lemma.

747
Lemma I. Whenever
- 1 &~
=Q(0) = lim — i — 0;)?
Q=Q(6) mgnoom;(ﬂ 0:)%,
exists, the average MSE of 61,0,..., approaches
(Q—¢)(Q + ¢ + R) i
r2(0) = {¢ [&s8E3] ite=s,
Q if Q <3¢,
where .
R=+/(Q+4)Q-39).
Because the maximum likelihood estimators yi,...,Ym
have average risk ¢, this demonstrates that the posterior
modes 6y, ..., 0, have smaller limiting average MSE than

Y1,---,Ym only if @ > 3¢ or Q < ¢. But the Lindley—Stein
estimators (16), together with O’Hagan estimators based on
pn and 0%, have a limiting-average MSE

Qe
O =G+ 9
and thus are substantially superior to yi, ..., y, Whenever

at least two of the 6;’s are unequal.

7. SAMPLING VARIANCE ¢ UNKNOWN

Consider next the one-way random-effects model, with
replications, described in Section 2. Together with the prior
assumptions for u and o2 of Section 4, assume that vo(o/¢
has a chi-squared distribution with v, degrees of freedom
independently of p and o2. Let S and S3 denote the
usual within-group and between-group sum of squares. It
is straightforward to show that as m — oo, with n fixed,
the Lindley—Smith joint modal estimators possess the same
limiting behavior as the estimators

0; = (1 - p)yi. + py.., (23)
where
1-— {2(1 + n_l)}_l\/l —4(1 - n‘z)F—1
p= if F>4(1-n"2),

1 if F<4(1-n"2),

and F is the usual F statistic. The estimators in (23) are also
the joint posterior modes of 64, ..., 6,,, unconditional on
and o2, for finite m, and under uniform priors for ¢ and
o?; that is, (¢, 0?) oc 1. But estimators based on marginal
modes for ¢ and o? (see Sec. 2) replace p by

p* = min{F~1 1}.

Under our distributional assumptions, given u, o2, and ¢,
the quantities

(n — 1)MW = m_IS\zN,

Mg = (m—1)7'53,
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and F are strongly consistent, as m — oo, with n fixed for
(n — 1)¢,n0? + ¢, and 1 + no?/¢. The joint modal esti-
mators for ¢ and o? have the same limiting form as the
estimators

¢ =n""(n—1)Mw + p* M3
and
52 =n"Y1-p)* Mz,

and these are not always strongly consistent for ¢ and 2.
Indeed, if no? < ¢(3 — 4n=2), then 62 is strongly consis-
tent for zero, so that the collapsing phenomenon again oc-
curs.

8. BAYESIAN ANALYSIS FOR THE ONE-WAY
RANDOM-EFFECTS MODEL

For the model described in Section 2, the posterior distri-
bution of 6; conditional on ¢ and o2, is normal with mean

or — ne~ly;. + o0 %y..

T g l4o2 24)

and variance (n¢~* + 072)"1(1 + m~'n"1¢/0?). O’Hag-
an’s marginal modal estimate 8 = (61,...,0,)T, would
replace ¢ and o2 in (8.1), by the values maximizing their
joint posterior density

m($,0°ly) < m($,0%)p " /? (¢ + no®) e/
X exp{— % p15% — % (¢>+n02)_15123}, (25)

with vy = m(n — 1),vs = m — 1, and 7(¢,02) denot-
ing the corresponding prior density. When 7(¢,02) o 1,
(25) is maximized when ¢ = My and 0% = max{n~!(Mp
— M), 0}. Hence O’Hagan’s marginal mode suggestion in
this case would provide the Lindley—Stein estimators

- v —F 'y —v.)
y. if F <1,

if F>1,
(26)

i =

where F is the usual F statistic. Under the prior assumption
for u,02, and ¢, of Sections 5 and 7, the joint posterior
density of 6y,...,0,, is

m —(vo+mn)/2
m(Oy) o lVoCo + S + "Z (0; — y.)2]

=1

. (27

—(v+m—1)/2
X ]

vC+ Y (0 —6.)?
=1

The Laplacian T procedure of Sections 3 and 4 may be
implemented for linear transformation = a6 by replac-
ing 6* in (11) and (12) by the O’Hagan vector €. Further-
more, D in (11) and (12) should replace ¢ and o2 in the
matrix D, satisfying

D! =no 'L, + 0L, - m‘lemeﬂ],

Journal of the American Statistical Association, June 1996

by the marginal modes described previously where e, de-
notes the m x 1 unit vector. Then (11) and (12) provide an
approximate vector 8, satisfying n = a’@,.

The approximation (5) may not be directly applied. Note
that the derivatives in (3) and (4) refer to the logarithm of
the posterior density (27), and that when (¢, 02) o 1, the
choices vy = v = —2 and {; = ¢ = 0 should be applied
to (27). The density in (27) will still remain proper, unless
m is too small. Note also that the mode 7 of the Laplacian
approximation generally will not satisfy 7 = aT@, where
6 denotes the O’Hagan estimate, but instead will seek to
approximate the mode of the marginal posterior density
of 7. ,

As a modification to the importance sampling procedure
of Section 4, when 7(¢,02) o< 1, note that the posterior
density of y; = log ¢ and v, = log(¢ + no?) is

1 1 _
o raly) x xp{ = 5 o =2 = 5 5%}

1 1
X eXP{— 3 (vB = 2)72 — 3 6_7351%} ,
(—o0 <71 < 72 < ).

This motivates a generalized bivariate ¢ importance func-
tion, combined with a rejection of those simulated values
for which v; > ~2. The importance function should possess,
say, w* = 30 degrees of freedom, together with mean vec-
tor (log[S% /(vw — 2)],10g[S3/(vs — 2)]) and diagonal pre-
cision matrix with diagonal elements equal to w*(vw —2)/
2(w*+2) and w* (vg—2)/2(w*+2). Similar constructions are
available for the more complicated experimental designs re-
ported by Sun (1992). This importance sampling procedure
may be used to compute the exact unconditional posterior
distribution of each 6;, based on the normal distribution,
conditional on ¢ and o2, described earlier.

9. NUMERICAL EXAMPLE

Consider the data reported by Hald (1952, p. 434) relat-
ing to the tensile strengths of n = 12 wires contained in
each of m = 9 cables. The group means for the m = 9
cables are described in the first column of Table 1. (Hald
has subtracted 340 from each observation.)

We applied the importance sampling/rejection method
of Section 8 to calculate the posterior distributions of each
group mean under uniform priors for ¢ and o%. The exact
posterior density of the first group mean is described by
the solid curve in Figure 1. We then applied the Laplacian
T approximation of Section'3. The degrees of freedom w
appearing in the approximation were chosen by the match-
ing method (i.e., comparison with the marginal based on
a bivariate ¢ approximation to the posterior distribution of
log ¢ and log o) described by Leonard et al. (1994). Any
value of w between 80 and 100 performed virtually equally
well. The Laplacian approximation to the posterior density
of the first group mean is reported by the dotted curve in
Figure 1, with w = 100.

Note the excellent correspondence between the (alge-
braically explicit) Laplacian approximation and the exact
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Table 1. Estimates of Group Means (Hald's Tensile Strength Data)

Group Group mean Posterior mean (Standard deviation) Laplacian mode Lindley-Stein Joint mode
1 —4.083 —3.796 (1.463) —3.791 —3.714 —3.696
2 —7.000 —6.463 (1.488) —6.461 —6.395 —6.275
3 —6.083 —5.625 (1.479) —5.621 —5.492 —5.465
4 —2.667 —2.501 (1.456) —2.497 —2.453 —2.442
5 1.917 1.690 (1.459) —1.685 1.625 1.611
6 .833 .699 (1.455) .696 .661 .652
7 917 776 (1.456) 772 735 .726
8 3.333 2.985 (1.468) 2.980 2.885 2.863
9 6.250 5.652 (1.497) 5.653 5.480 5.443

results. Results of similar accuracy were obtained for all
m = 9 groups.

The observed group means are described by the entries
in the first column of Table 1. The entries in the second
column describe the exact posterior means of the treatment
means, under our uniform prior for ¢ and o2. The cor-
responding posterior standard deviations are in brackets.
The third column lists the unconditional posterior modes
of the treatment means, under our Laplacian approxima-
tions to their marginal posterior densities. The fourth col-
umn presents the Lindley-Stein (O’Hagan) estimates (25).
Finally, the fifth column lists the (no longer recommended)
joint modal estimates (23).

Note that the posterior means shrink the corresponding
sample means toward the grand mean, y.. = —.73. Further-
more, both the Lindley—Stein (O’Hagan) estimates and the
Laplacian modes are very close in numerical terms to the
posterior means. But the joint modal estimates in the fifth
column shrink the group means slightly further toward the
grand mean.

The foregoing calculations were performed on a Sun
4/330 computer. About 1 second of CPU time was needed
to calculate each Laplacian curve. In contrast, 1,333.4 sec-
onds were needed to calculate the corresponding curve by
importance sampling, using a half-million simulations to
obtain accuracy to about three significant digits. But the
m = 9 posterior means and variances were calculated in
just 336.6 seconds, with a similar number of simulations
yielding about four significant digit accuracy. The random
number generator (RNOR) used was produced by the Com-
puter Science Department of Washington State University.

025 / Y
020 4 /
0.15 /

0.10 /

0.05

0.0 — -
T T T T

-10 -5 0 5

Figure 1. Posterior Density of First Group Mean. The dotted curve
represents Laplacian T approximation (w = 100); the solid curve, exact
(by importance sampling).

10. FREQUENCY SIMULATIONS

We simulated the risks of the various choices of esti-
mators for 6y,...,0,, under five loss functions: average
squared error loss, average absolute loss, maximum squared
error loss, maximum absolute loss, average step loss, with
unit step width. A large range of choices of m,n, ¢, and
01,...,0,, yielded qualitatively similar results to those de-
scribed in Tables 2, 3, and 4, which take m = 10 and n = 20.
In Table 2, it is supposed that 6; = 2,0 =4,..., 6,0 = 20,
whereas in Table 3, it is instead assumed that §; = 1,
0 =2,...,00 =9, and 69 = 20. Finally, in Table 4, the
choices 6; = 1,05 = 6,03 = 7,...,08 = 12,0y = 13, and
010 = 23 are made.

The risks for the sample means, Laplacian modes (un-
der uniform priors for ¢ and ¢2), Lindley-Stein estimators,
and joint posterior modes of 61, ..., 6,, (also under uniform
priors for ¢ and o?) are described in the last four columns
of Table 2 for the five choices of loss function. The joint
modes are described in (23); these maximize the joint poste-
rior density of 6y,...,0,,, unconditional on # and o2. Note
the following results:

1. The Laplacian modes and Lindley-Stein estimators
perform better than the sample means under all five loss
functions.

2. There is little to choose from in terms of frequency
performance between the Laplacian modes and the Lindley—
Stein estimators. But it is anticipated that the exact posterior
means might perform slightly better than the Lindley—Stein
estimators, if their risks could indeed be simulated.

3. Though the joint modal estimators perform almost as
well as Lindley—Stein for some parameter values, they per-
form worse than even the sample means for other parameter
values (e.g., note the results for ¢ = 120).

More substantial differences are noticeable in Tables 3
and 4. Note, for example, the inferior performance of the
joint modes (under uniform priors for ¢ and 02) when ¢
= 120. Sun (1992) further investigated frequency properties
of the joint modes, but under proper inverted chi-squared
priors for ¢ and o2. He showed that for some choices of
the prior parameters appearing in the inverted chi-squared
distributions, the MSE properties of the joint modes can
be greatly improved, in comparison to our results under
uniform priors for ¢ and o2. But for a very wide range
of choices of the prior parameters, the joint modes do not
perform so well.
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Table 2. Risks Under Alternative Loss Functions (First Set of Treatment Means)

Loss function Sample means Laplacian modes Lindley-Stein Joint modes
¢ = 40
(a) 1.983 1.927 1.932 1.935
(b) 1.122 1.106 1.108 1.109
(c) 7.558 7.368 7.385 7.396
(d) 2.652 2.619 2.622 2.624
(e) 722 718 719 719
' ¢ = 80
(a) 3.966 3.757 3.768 3.820
(b) 1.587 1.545 1.548 1.559
(c) 15.117 14.337 14.354 14.500
(d) 3.750 3.655 3.658 3.677
(e) .801 .796 .798 799
¢ =120
(a) 5.946 5.541 511 6.318
(b) 1.944 1.877 1.874 1.976
(c) 22.668 21.022 20.839 22.828
(d) 4,592 4.426 4.414 4.565
(e) .837 .833 .830 .835

The simulations presented in this article were performed
using the random number generator described in Section 9.
The entries in Tables 2, 3, and 4 are each based on 5,000
simulations, yielding good accuracy to about three signifi-
cant digits.

11. FURTHER DISCUSSION

Note that for the one-way random-effects model of Sec-
tion 8, as m — oo, with y;.,92., ... fixed and convergent to
a limit y.. and Mw, Mg, and n fixed, 6,05, . .. converge (in
posterior distribution and irrespective of our prior assump-
tions for ¢ and o?) to independent normal variates. The
limiting posterior means are simply the Lindley—Stein esti-
mates in (26), and the limiting common posterior variances
is n™'F~max(Mp — My, 0).

The simulation results of Section 10 suggest that Stein-
type shrinkage estimators may have good risk properties un-
der the loss function (22), as well as under average squared
error loss. This is desirable, because it seems important to
control all individual losses, as well as their average. A
Bayesian property is now developed.

Lemma 2. Suppose that 6,,...,0,, are a posteriori in-
dependent and normally distributed with means 67, ..., 65,
and variances vi,...,vn. Then 60%,...,0% are Bayes (or
generalized Bayes) estimates under any loss function of the
form

L(6,0) = max A{|; - 6,1}, (28)

where A{-} is a strictly increasing, with A{0} = 0.

Table 3. Risks Under Alternative Loss Functions (Second Set of Treatment Means)

Loss function Sample means

Laplacian modes

Lindley—Stein Joint modes

&= 40
(@) 1.983 1.912
() 1.122 1.101
(© 7.559 7.349
(d) 2.652 2615
() 722 715

é =80
(a) 3.966 3.683
(b) 1.587 1.524
(© 15.117 14.368
(d) 3.750 3.653
(e) 801 791

é=120
(a) 5.942 5.310
(b) 1.943 1.826
© 22,588 20.914
(d) 4584 4.403
(e) 837 824

1.920 1.927
1,102 1.103
7.426 7.467
2.628 2.635
716 716
3.723 3.886
1,527 1.545
14.759 16.009
3.697 3.803
791 791
5.367 7.774
1.828 2.023
21.681 39.764
4.480 5.500
822 830
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Table 4. Risks Under Alternative Loss Functions (Third Set of Treatment Means)

Loss function Sample means Laplacian modes Lindley-Stein Joint modes
¢ = 40
(a) 1.983 1.920 1.926 1.931
(b) 1.122 1.104 1.105 1.106
(c) 7.559 7.361 7.411 7.435
(d) 2.652 2.618 2.626 2.630
(e) 723 718 718 718
¢ = 80
(a) 3.966 3.719 3.746 3.833
(b) 1.587 1.533 1.536 1.548
(c) 15117 14.394 14.615 15.146
(d) 3.750 3.659 3.684 3.739
(e) .801 .795 .794 794
¢ = 120
(a) 5.940 5.403 5.437 6.952
(b) 1.943 1.842 1.846 1.970
(c) 22.630 21.218 21.501 30.718
(d) 4.588 4.434 4.468 5.019
(e) .837 .826 .826 .829
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The proof of Lemma 2 is provided in the Appendix.
Lemma 2 strongly justifies using either the exact posterior
means of the #; or the Lindley—Stein estimators (26) when
m is large under a wide variety of choices of A.

12. CONCLUSIONS

Importance sampling, Laplacian approximations, and the
Gibbs sampler permit the consideration of models and prior
assumptions of high complexity, because the computations
can now be efficiently handled. The precise analyses of
simple models is also facilitated. Thus the horizons for
Bayesian research have been substantially broadened by
the advent of these techniques, which replace former ap-
proaches based on joint modal estimators.

We have demonstrated that when uniform priors are as-
sumed for variance components, the Bayesian estimates
of the first-stage parameters can have excellent frequency
properties. If prior knowledge is available, then these es-
timates can be further improved in a subjective sense via
inverted chi-squared distributions for the variance compo-
nents. Interval estimates and posterior probabilities are also
available. For example, when investigating a hypothesis of
the form Hy: n = 19, we can compute the “Bayesian sig-
nificance probability,” ¢g = p(n < 7o), from our marginal
posterior distribution for 7.

These methodologies are also applicable to nonlinear
variance components models; for example, the Bayesian
graduation model introduced by Hickman and Miller (1981)
and the genetic trait model considered by Foulley et al.
(1990). The latter took observed counts yi,...,ym to be
independent and Poisson distributed given.their respective
means 6y, ...,0p,. It also is assumed that the ; = log¥;
satisfy

v =x; B+ 2zl (t=1,...,m),
where the x; and z; are specified p x 1 and ¢ x 1 design
vectors, and 3 is a p x 1 vector of unknown “fixed effects.”

Moreover, « is a vector of “random effects” that is taken to
possess a multivariate normal distribution with zero mean
vector and covariance matrix o2A. Then o2 is the unknown
additive genetic variance, and A is a specified matrix of
additive relationships.

If none of the observed y; are small, then we may, as a
first attempt, take the likelihood of ; to be approximately
normal, with location logy; and dispersion y;!. Then all
of the techniques herein are also available for drawing in-
ferences about elements of # and «, unconditional on 2.
More elaborate importance sampling and Laplacian meth-
ods are available that refer to the exact likelihoods of the ~;
(see, e.g., Tempelman and Gianola 1993). When compared
to importance sampling, the Laplacian T" approximation fre-
quently has comparable accuracy and yields considerable
savings in terms of CPU time. Nonetheless, it is often use-
ful to refer to computer simulations to check the accuracy
of the Laplacian approximation.

APPENDIX: PROOF OF LEMMA 2
The posterior cdf of 6; is @[(0; — 07)/./v5]. Consequently,

5j+s-e;)
Vi

y (f)%v_"i) , (A1)
J

where ¢ = A™!()). Furthermore, the posterior expectation of the
loss function in (28) is

a(0) = /O ” [1 —ﬁﬂj] da. (A2)

_ The expression in (A.1) is maximized, for any ¢ > 0, when
0; = 6;. Consequently, (A.2) is minimized when 6; = ¢ for
j =1,...,n, thus completing the proof.

p(A{|6; = 6;]} < Ay) =@ (

[Received August 1993. Revised August 1995.]
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