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Consider the logistic linear model, with some explanatory variables overlooked. Those explanatory variables may be
quantitative or qualitative. In cither case, the resulting true response variable is not a binomial or a beta-binomial but
a sum of binomials. Hence, standard computer packages for fogistic regression can be inappropriate even if an
overdispersion factor is incorporated. Therefore, a discrete exponentia] family assumption is considered to
broaden the class of sampling models. Likelihood and Bayesian analyses are discussed. Bayesian computation
techniques such as Laplacian approximations and Markov chain simulations are used to compute posterior
densities and moments. Approximate conditional distributions are derived gnd are shown to be accurate. The
Markov chain simulations are performed effectively o calculate posterior moments by using the approximate
conditional distributions, The methodology is applied to Keelers hardness of winter wheat data for checking
binomial assumptions and to Matsumuta’s Accounting exams data for detailed likelihood and Bayesian analyses.

Keywonls: Gibbs sampling; Laplacian approximation; Metropolis-Hastings algorithm; Beta-binomial model;
Discrete exponential family model; Logistic regression

1 INTRODUCTION

Let ¥, },,..., ¥, be n independent random variables cortesponding to successes out of
My, My, ..., my trals in » different groups, and 1, x5,...,x, denote the corresponding
(¢+ 1) x 1 design vectors. The standard logistic linear model assumes that, given
X =01, x0,x0,... ,x;q)r, the random variable ¥; possesses a binomial distribution with

parameters m; and p;, where p, denotes the probability of success for that group. The standard
logistic linear model is defined as

Pi
1 —

logit(p,) = log( ) = Bo+ Busit + Byt + -+ By

where f = (8y,8,,5,...., ﬁq)T is a vector of ¢ + | unknown parameters. Statistical infer-
ences such as estimation, hypothesis testing, prediction can be performed using standard
computer packages, such as SAS and S-PLUS. However, it is quite often that some exp-
lanatory variables are overlooked in the analysis. In such cases, the variable ¥; is no longer
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a binomial but a sum of binomials. For example, we consider a dose-response model, where
the response is the number of inscets killed and the true model consists of two explanatory
variables, dosage levels and gender. Suppose that the experimenter overlooked the factor of
gender. Then the resulting true response is not a binomial but the sum of two binomials, one
for male and the other for female. The sum of binomials may be well approximated by a
single binomial in some cases but not in general. Hsu ef al. (19913 suggested a discrete
p-parameter exponential family model to approximate the sum of binomials. They assume

that the observations vy, ..., v, are independent and the probability p(y; = f) satisfies
Ly
plv =) = = o0 {(F=00...m). (1)
g

where the multivariate logits 4;( /) satisiy
Ay = 1og™ Gy )t (2)
with

!
Py - Y

My g
/

A polynomial model is used in Eq. (2) for the logits. in the spirit of Bock (1972) and others.
The model defined in Eqgs. (1) and (2) is tlexible and the fit to the data can be improved
by increasing the number of parameters in the model. Therefore. the maodel provides an
effectively nonparametric fit to a discrete distribution. The explicit parameters in Eq. (2)
arc not meaningful on their own, since the model is motivated toward a reasonable fit to
the data. Towever, many parameters of interest can be expressed as a function of the para-
meters in [q. (2). The probability p(y; = /) in Eq. (1) is an example of such parameters.

Extending the model in (1) and {2) to the cases where the covariates Xi. X2, ... X, are
considered. we assume that the vy, ...y, are independent, and that given f =
(/790 | PO /f(‘,)7 and 7= (35 e - j',,,)". the ith group response v; possesses probability

mass function

) el )
ply=jlfy %)= EW (=0, 1.....m) {(3)
where the multivariate logits 4,4} satisty
A =log" G4 x] Bt +iad’ et (4)

The model defined in (3} and (4) consists of two parts: If the parameters 75. 73, ..., 7, 1€
sel equal to zero, then (3) and (4) provide the logistic linear model, under the binomial sam-
pling assumption of v;, with sample size m; and probability of success e Bl 4 % B). if the
parameters ffy. ... fi, are set cqual to zero, then we have a polynomial model for the
logits, and the model provides the discrete p-parameter exponcntial family model as
described in Egs. (1) and (2).

Theretore, Fg. (4) could be used to investigate the deviations from the logistic linear
model. The model in (3) and (4) is now referred to as the p-parameter discrete exponential
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family logistic linear model. The model provides an alternative to the beta-binomial approach
{Williams, 1975, 1982; Leonard and Novick, 1986; Prentice and Barlow, 1988), which adds a
single extra parameter to the logistic linear model. The latter handles overdispersion, but does
not address other deviations from the binomial assumption.

When p is specified, the likelihood of @ = (87, ") giveny = (¥, 2, ..., y,)", under
assumptions (3) and (4), is

I81y) =B, yy) =expiso+s]B+sly~ > Di(f.7), (5)
i=1
where,
S0 = Z log™C,,, (6)
i=1
§ = Z}’rln (7
i=1
n " n r
§$ = (Zy?,zy?,,zyf) ' (8)
i=1 =1 i=1
and
Di(B.y)=log ) ™Cyexplhxlf +uly), (9)
A=0
with
w, = (R, ... kY. (10)

Since the ith response y; can be reinterpreted as polychotomous, we have a generalized
linear model for the logits of a multinomial distribution with m; + 1 cells and unit sample
size. Consequently, the parameters in (4) can be estimated and the model can be analyzed
using standard computer packages. Furthermore, strong consistency and asymptotic normal-
ity will hold for our maximum likelihood estimates, as n — oo, with m;, p and g fixed, with
X1, X2...., X, concentrated on a bounded region and "7 | x;x! remaining positive definite as
n — 00. See Chiu er al. (1996) for a related asymptotic development.

When p is not specified, we may choose p to maximize the generalized information
criterion (GIC)

1
GIC =L,44 — Ea(P +4q),

where L, . is the logarithm of the likelihood (5), evaluated at the p + ¢ maximum likelihood
estimates, and « represents a penalty per parameter included in the model. Commonly used
penalties are @ = 2, which leads to Akaike’s information criterion (Akaike, 1978):

AlC =Ly, — (p +q),
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and 2 = log, n, which leads to Schwarz’s information criterion (Schwarz, 1978):
. |
BIC =L,4y — E(p + ¢ log, n.

Information criteria have been discussed and compared in many papers. Please see Akaike
(1978), Schwarz (1978). Stone (1977, 1979), Atilgan (1983), Shibata (1981), Thompson
(19784, 1978h) and Nishi (1984) for details.

The model in (33 and (4) may be checked via a chi-square statistic. Let ei( vy and vi( B, 7)
respectively denote the mean and variance of the distribution n (3). and Ietﬁ;’ and 7 denote
the maximum likelihood vectors of # and y. Then, with & = e,(ﬁ, M and ¥ = v([}\ ),
the mode! in (3) and (4) may be tested by referring the statistic

” 2

52 ZZ(."'ijﬁ’i) ()

v
=1 '

to the tables of the chi-square distribution with n —g — p — 1 degrees of freedom.

2 THE KEELER DATA, AN ILLUSTRATIVE EXAMPLE

The data of Table 1 are a subset of an experiment conducted by Keeler (1985). They per-
formed an experiment to determine the hardness of {wo strains of winter wheat, Norstar
and Frederick to thermal stress. Plants were cooled to a predetermined temperature and
were then removed to a growth room to detennine survival by regrowth. The predetermined
temperatures were reported in column |. The number of dead plants and the number of plants
on test for varieties Norstar and Frederick are in columns 2-3 and 4-5. respectively. We fit
the data using the logistic linear model:

logit{ p,) = fig + fixa + flaxn. (12)

where. g, is the proportion of dead plants. x, = log(—Temp) and, xy; = | if the variety
Norstar was used and xy; = 0 otherwise, for the ith temperature-variety cotnbination
group. The maximum likelihood estimate i, of fi, is 2.3808, with a standard error of
0.2676. This indicates that varicty is an important factor in the analysis since #. 1s more
than eight standard errors from zero. For illustrative purpose, we suppose that the important
factor, variety, was wrongly ignored. In such case, only the numbers combining the two
varieties would be used and are reported in Table 1 (column 6 for number of dead plants
and 7 for total plants on test). In such case, the dead plants in each temperature group is

TABLL 1 The Keeler Data

Norstar Frederick Cenmbined

Temperature Dead Plants on Tosr Dead Planes on Tese Doudd Plants on Test
— 1 41 | 4 2 81
-12 ¢ 1 41 15 41 16 82
-4 2 4l 36 43 IR 84
- 16 ¢ 7 41 40 40 47 81

(LIS 27 a1 44 40 o7 Rl
200 19 42 40 40 79 R2
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the sum of two binomials, where one for Norstar and the other for Frederick. Nevertheiess,
we fit the standard logistic linear model

logit(p;) = B, + Bxi1. (13)

The likelihood ratio chi-square value for goodness of fit was x* = 7.04, with 4 degrees of
freedom, and the p-value was 0.1340. The goodness-of-fit chi-square test does not suggest
the inadequacy of using model (13), while an important factor, variety, was wrongly ignored.
We then fit data to the p-parameter discrete exponential family logistic linear model in (3)
and (4) with the multivariate logits A7) satisfy

AdJ) =1og™C; + By -+ Bixa)i +v2i* + 1370 + - + Vo’

The maximized log-likelihoods are —15.4945, — 13.6520, and —12.7583 forp = 1,2, and 3,
respectively. Therefore, both AIC and BIC pick p =2 and prefer a 2-parameter discrete
exponential family logistic linear model to a simple logistic linear model (p = 1). Further-
more, the maximum likelihood estimate $, of y, was —0.0568 with a standard error of
0.0160. This suggests that y, is different from zero, since 7, is more than three standard
errors from zero, hence refuting the logistic linear model (13). This example shows that
model in (3) and (4) can be used as a useful too] for testing the adequacy of the logistic linear
model assumptions,

3 SIMULATION RESULTS

Three cases were considered for the study and one thousand simulations were performed in
each case. For all cases, we considered a logistic linear regression with two explanatory vari-
ables. We assume that one of the explanatory variables was binary and was wrongly omitted
from the study. The resulting response ; for the ith group is in fact a sum of two binomials,
where each of them corresponds 1o the response of one of the two subgroups classified
according to the binary explanatory variable. Let m; and my be the subgroup sizes and
p1 and p; be the probabilities of success for the two groups, respectively, and

logit(p() = ap + a,x, (14)
and
logit(p2) = fly + f|x. (15)

In each simulation, n = 100 pairs of (»1., y2) were simulated, where 1, and y; were simulated
according to logistic regression functions (14) and (15), respectively, with a common x value
and a common subsample size m; = m; = 10. The x values were 0.1,02,...,09, 1.0 and
were repeated ten times for each simulation. In the absence of the binary explanatory variable
which appeared in the true model, only the total ¥ =y +y2 was recorded.

Three cases (Cly ap = 2,03 = 1, ff, =20 =L (C2ay=-2,0,=1,8, =2/ =1
(C3) ap=-2,0,=1,8)=4,8, =1, and four models (M1) logistic linear regression
model; (M2) beta-hinomial regression model; (M3) 2-parameter discrete exponential family
logistic linear model; (M4) 3-parameter discrete exponential family logistic linear model
were studied and compared. Table 1l presents the average of the maximized log-likelihoods
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TABLLE 11 Simulation Study.

Averre maximm

Medel Faramerers sised Cases chasen by AIC fog-likelitood
Case Cliag =202 — L fly -2 208 =}

M1 2 837 —148.2150
M2 3 34 - 148.0394
M3 3 16 — 147.7164
M4 4 13 — 147.0520
Case C20 g = =21 = 1 fly = 2.0 =1

M1 2 0 —194.0016
M2 3 4] — 194.0022
M3 3 hY — [RO. 13060
M4 4 2414 - 179.45013
Cose C3%g = ~2om = L flg =30, =1

M1 2 0 - 188.0875
M2 3 0 — 1880882
M3 3 337 — 1065.6953
hSE: 4 663 - 165.7182

for each model. and the number of times that model was chosen according to ALC. For case C1,
when 7g = 2. = k. fiy =2, and ff, = 1. the two regression functions are identical and
the true model is in fact a logistic linear model, our study shows that among the 1000 simula-
tions, 837 correctly selected the true model. For cases C2 and C3, the parameters %) and f, arc
different, hence the true model is no longer a logistic linear model. Our study shows that none of
the simulations selected the usual logistic linear mode! or the beta-binomial regression model,
and the average maximized log-likelihoods were substantially farger for the two discrete expo-
nential family logistic linear models than the logistic regression model and the beta-binomial
regression model. This simulation study shows that mode! in (3) and (4) together with
the information criterion provides a useful tool for checking the logistic linear regression
assumptions.

4 THE MATSUMURA DATA — LIKELTHOOD ANALYSIS

The data in the Appendix provide the observed exam scores for n = 145 University of
Wisconsin students in Professor Matsumuras Accounting class. Each student completed
four multiple choice tests, the lirst two containing 25 each, the third one containing 22,
and the last one containing 29 dissimilar items. We first fit the data using the logistic regres-
sion model (including an intercept term), with the last exam scores as the response variable
and the proportions correct on the first three exams as explanatory variables. Our chi-squate
value (11} for the logistic regression model was 7 = 236.455, with 140 degrees of freedom.
The corresponding p-valuc was (.0000007. Obviously, the logistic regression model does
ot fit the data well. We then fit the data using the p-parameter discrete exponential family
jogistic linear model and to the beta-binomial model. Both models fit the data well, For
the beta-binomial model, the chi-square value was ¥> = 145.899, with 139 degrees of free-
dom. and the corresponding p-value was 0.327. For the p-parameter discrete exponential
family logistic linear model. AIC and BIC both were maximized when p = 2. The corres-
ponding chi-square value was [50.595, with 139 degrees of freedom, and the p-value was
0.237. The maximum likelihood estimates of fiy. 1. fiz. fi and 7,. together with their stan-
dard errors, are reported in Table 1. Note that %, is more than five standard errors from zero,
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TABLE III Maximum Likelihood Analysis for Matsumura Data.

Farameter fin B8 5% s V2
MLE —2.169 0,343 1.210 0.823 0.033
Standard Error 0233 0.349 0311 0.221 0.00%

refuting a standard logistic regression model (y, = 0). One possible interpretation of this
phenomenen is that an important explanatory variable was overlooked, that is, the degree
of difficulty of each item. Some items are easier and some items are more difficult in
most tests. However, it is not easy to quantify the level of difficulty of each item and there-
fore, it is seldom recorded in practice. Please note that only the total scores for each test were
reported and the individual responses to each item were unfortunately not reported. There-
fore, the standard item response models (Van der Linden and Hambleton, 1997) will not
be able to be directly applied in this example.

In addition to the parameters specified in the model, many parameters of interest can be
represented as functions of the parameters in the model. For instance, the predicted score
for an individual, given x may be of interest. It is essential to predict a student’s score
when this student missed the test and his previous test scores are available. In this case,
the parameter of interest is the expected value of y given the observed x, that is,

n=E(yIf.7.x) =Y jply =jlB.7.3)
J=0

Y, jexp(log™C; + 5T + ) 16)
— Yhoexp(logmCh + X7 + uzp)’

w4 om Lo 4
[]
LA LA — At
|__ =
LALR B! aie 4 o1 o
Gtk - L [T
* L n - o W H » » an - " - ; n
a b c

FIGURE | Est_imated sampling distributions: estimated sampling distribution for a student who cotrectly answered
23, 21, and 20 items for the first three tests, using: (a) Logistic Regression model; (b} Beta-binomial model;
(c) Exponential family logistic linear model.
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We now use the scores (23, 21, 20, 27) of the first student in the data set for illustrative pur-
poses. Suppose a student correctly answered 23, 21 and 20 items for the first three tests, his
predicted final exam score can be obtained by substituting the maximum likelihood estimates
in (16). The predicted scores were 23.491, 23.495, and 23.402 for the logistic regression
model. beta-binomial model and 2-parameter discrete exponential family logistic linear
model respectively. Please note, although the expected values of y given x are not very distinet,
the predicted probability mass functions of v can be quite different. Hence it may make a sig-
nificant difference when we perform statistical inferences. Figure 1 presents three histograms
which describe the estimated distributions of v given x = (1, 23/25, 21725, 20/22)", for the
three different models: Figure 1a for logistic regression model; Figure tb for beta-binomial
model; and Figure ¢ for 2-parameter discrete exponential family logistic lincar model.

5 BAYESIAN ANALYSIS

In some situations it may be possible to incorporate prior information regarding # and y
via independent multivariate normal prior distributions, say with mean g, ., and
covariance matrices Cp, C,. The posterior distribution n(#}y) of 0=(p". y"y piven y is
proportional to

"

_ . . 1 .
A Ly) = expd s+ s f 81y — ZD:(ﬁ~ ) “E(ﬂ*ﬂ;;)?(:,':t(ﬂ — )

i==|

| .
_E(yfpr)vcrl(}’Vﬂr) . (17}

where 4. 5. §; and D,( . y) are defined in (6)-(9). However, as [Cy| — 00 and |C,| — o0,
the prior information becomes vague, und the two quadratic terms, within the exponential of
(17) vanishes, and (17) becomes proportional to the likelihood (5). Let n = £(8) be the para-
meter of nterest. The posterior distribution of J given y can be (4) closely approximated
using Laplacian approximations, (b) approximated using approximate conditional distribu-
tions. or (¢) simulated using Gibbs sampler/Metropolis-Hastings algorithm,

{a) Laplacian Approximation. The posterior distribution of # = g(@ can be approximated by
207 y) o 7@, 9IRS 10, R, (18)

where #, conditionally maximizes (17) for each fixed y = g(0). and satisfies

Olop r 3
[L,IOE m(0y) 1 (.u(o)] — 0.
=0,

an EREERY)

A, 15 a Lagrange muitiplier,

"

_ _[2lloer01y) azg(fn]
T 200" 000" lg.a,

and /(| g, C) denotes the density of i = g(0} while # possesses a multivariate normal
distribution with mean vector g and covariance matrix C. For details of Laplacian
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approximations, see Leonard (1982), Leonard et al. (1989), Hsu (1995), and Leonard and
Hsu (1999).

Approximate conditional distributions. The posterior density of @ = (87, 9”) given y
can be decided by the conditional distributions of § given y and y, and of y given f and y.
Each of the two conditional distributions can be approximated by a normal distribution.
Therefore, we can approximate the posterior density of & given y by the above two
approximated conditional distributions. Then the Gibbs sampling method may be used to
caiculate the posterior moments of # = g(f, ), given y, by simulating £ and y from the
two approximated conditional distributions, respectively. The two approximated condi-
tional distributions are derived below: X

For a given y, expanding log 7(#y) in a Taylor series about § = ﬁ},, where f, maximizes
the posterior density n(@|y) and #(€|y) is defined in (17), gives

log #(81y) = log 7(B,. y) + [si" — D ex —h- uﬁ)"cf:‘}(ﬁ -8,

=1

1< p -
—3 2 (B=B) vixx] + ;') B -B,)
i=1

+ cubic and higher order terms, (19
where,
& =l =E(vilBr.x)= hp(yi=hlB,. 7. %), (20)
=0
and

v = () = Var(y B, . %)

m; R L] R 2
=Zh2p(y,-=hw.,y.x,~)—[th(y.-:hw,y,x,-)}. 1)
h=0 A=0

with p(y; = h| B, . x;) defined in (3). Neglecting cubic and higher order terms and
completing the square in (19), we find that the log-posterior can be approximated by

- _.5 1
log#01y) ~ loga(h,. 1) + 41Q, 4, — 3 (8- FVQA-B) @)

where

dy =3 (3 - e)x — C;' (B — ), (23)
i=1

n
Q =) vixal +C;, (24)
i=1
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(c)
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and

g =p.+Q'd. (25)

Equation (22) tells us that the conditional posterior distribution of B, given p, is
approximately multivariate nortnal, with mean vector B and covarance matrix Q.
Analogous to the above derivation, the approximate conditional distribution of y, giver{ f,
may be derived hy expanding log 7(@1y) in a Taylor series up to the second order term,
about y = p;. where yy maximizes the posterior density in {17) for a given f. Then the
conditional posterior distribution of y given g is approximated by a normal distribution
with mean vector y; and covariance matrix Qﬂ'l‘ where

dp =Y _fw, — Eu 1By x)l = €713 — ). (26)
i-1

Q; = Z Coviu, |f. 75 x) + C;l = Z [E(“l‘.“;"-: |B. . %)

iz

izl

AJmhmjwhmmuﬂ%Jﬂ+Cﬂ_ (27)
Y=+ Qy 'd. (28)

and the vector u is defined in (10). Note that the expectations, variance, and covariance in
(20}, (21}, (26) and (27) arc with respect to probability mass function (3).

Let 57 = g f. ) be any parameter of interest. The approximate posterior mean may be
caleulated, using Gibbs sampling method, as follows: Given y, a B is generated from the
multivariate normal distribution with mean vector g7 and covariance matrix Q' Given
B a yis generated from the multivariate normal distribution with mean vector Yi and
covariance matrix Q'T,', The quantity § = g(f,y) is then calculated. The posterior mean
of i given y is approximated by the fong-term average of the calculated 5. The simulation
process continues until the average converges. For details of the Gibbs sampling method.
sec Tor example Gelfand and Smith (1990), Leonard ef ol (1994), Gelman er al. {1995),
Leonard and Hsu (1999).

Fxact distribution and moments. The exact posterior distribution and moments of any
parameter of interest can be simulated using Gibbs sampler/Metropolis-Hastings algo-
rithm via the approximate conditional posterior densities derived in part (h). Let
2 (f1y.y) and 7' (y|f, ¥} denote the multivariate normal densities with means ﬁ"yﬁ
and covariance matrices Q"fl .Qﬁ', respectively, where ﬂ*, 75 Qs and Q are defined in
(25). (28). (24), and (27). Note that the densities a*(Bly.¥) and =*(y] B, ¥} approximate
the conditional postetior densities 7( #]y.¥) and n(y|B.v). respectively. The posterior
mean of § = g( f.y) given ¥, can be obtained by simulating # and y from the normal
distributions with densities 7*( #|y.y) and t*(y|f.y). In the ¢th simulation, let 4! =
(7 97) be the simulated 1. To simulate §'", we sample a candidate point g* from
a1y y) and set

il with probability min(Py, 1)

ﬂm: ﬂ” §!

otherwise



A GENERALIZATION OF THE LOGISTIC LINEAR MODEL 559

where

LBy By
n( BV 1D, /(00 y)

Py
Then, sample a candidate point y* from n*(y |, y) and set

w_ |7 with probability min(P,. 1)
= =1 otherwise

where

vl S OVl VS TN
¥ a(pt-n |ﬂ(l)l y)/m* (-0 Iﬂ'('), y)

The exact posterior mean of » is the long term average of the simulated 7 =
(B ¥"). See Gelman et al. (1995) for details of the above simulation procedure.

6 THE MATSUMURA DATA — BAYESIAN INFERENCE

The Bayesian marginalization techniques discussed in Section 5, for the discrete exponential
family logistic linear model defined in (3) and (4), are applied to the Matsumura data.

Following the discussions is Section 4, we again use the scores (23, 21, 20, 27) of the
first student in the data set as an example. The following four parameters are of interest
and will be discussed, under the vague prior for § and ? by letting |Cy| — oo and
IC,! — oo, in (17).

(A) 74 =7;. The standard logistic regression model will be refuted when the posterior
distribution of y, is not concentrated about zero.

(B) ny = p(y = 27|, 7, x); the probability that a student correctly answered 27 items in the
final test given the fact that he correctly answered 23, 21 and 20 items for the first three
tests.

(C) ne = E(p|B,y,x); the predicted score for an individual who correctly answered 23, 21
and 20 items for the first three tests,

Table 1V presents the simulated posterior means for the above four parameters utilizing
approximate conditional (normal) distributions and Gibbs sample/Metropolis-Hastings algo-
rithm, which were discussed in Section 5(b) and 5(c), respectively.

TABLE 1V Posterior Means.

Parameter of interest L Hy e

Conditional normal approximations 0.03131 (.06591 23.4063
Ciibbs sampler/Metropolis-Hastings aigorithm 0.03083 0.06585 234119
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The newly derived approximation, based on conditional {normal) approximations, pro-
duced surprisingly close approximates to the simulated posterior means, which are obtained
via Gibbs sampler/Metropolis-Hastings algorithm.

Figures 2 to 4 present the posterior densities of the parameters 7. 1p and 15, described
above. In each figure, histogram () used 100,000 simulations for the Gibbs sam-
pler/Metropolis-Hastings algorithm, and curve (b) was obtained by using the Laplacian
approsimation. Please note the close correspondence between the approximate smooth
curve {b) and simulated histogram (a) for these figures.

Figure 2 describes the posterior density of #, = 7,. As the posterior density of , =7, 18
concentrated on the region (0.01, 0.05), this confirms that a standard logistic regression is not
uite adequate.

Figure 3 describes the posterior density of i, = p(y =27{8. 7, x). The figure shows that
the probability, for a student who correctly answered 23, 21 and 20 items for the first three
fests respectively, to correctly answer 27 items on the final test is about 0.03 to 0.11.

Figure 4 describes the posterior density of 1. = £( v|B.y.x). The figure tells us that for a
student who correctly answered 23, 21 and 20 items for the first three test, is likely to answer
22 1o 24.5 items correctly on the last test.

40

POSTERIOR DENSITY
g
L

10 —

N

T T T T
0.0 0.02 0.04 0.06

FIGURE 2 Marginal posterior density of i, (a) histogram, based on 100000 simulations for exict posterior
density using Gibbs sampler/Metropolis-Hastings algorithm; (b) Laplacian approximation.
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—
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POSTERIOR DENSITY
&
1

T T T T T T
0.02 0.04 0.08 0.08 .10 0.12

FIGURE 3} Marginal posterior density of n,: (a) histogram, based on 100,000 simulations for exact posterior
density using Gibbs sampler/Metropolis-Hastings algorithm; (b) Laplacian approximation.

12 - -
N : |

i Y
08 - ; ¢

0.6 + —

POSTERIOR DENSITY

02 -

*¢ LI T T LIl T T T

2.0 2.8 23.0 235 240 24.5 250

FIGI_)RE 4 Marginal posterior density of Nc: {a) histogram, based on 100,000 simulations for exact posterior
density using Gibbs sampler/ Metropolis-Hastings algorithm; (b) Laplacian approximation.
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7 CONCLUDING REMARKS

The p-parameter discrete exponential family logistic linear model described in Eq. (3) and (4)
extends the commonly used logistic linear model, while some explanatory variables were
overlooked. The model provides a semiparameter fit to the data. Moreover, the discussions
in Sections 2 and 3 showed that the model also provided a usetul tool for checking the
adequacy of the logistic linear model. Bayesian analyses were addressed in Sections 5 and
6. The computations for the analyses were found to be not straightforward. Bayesian compu-
(ation methods such as Laplacian approximations and Gibbs sampler/Metropolis-Hastings
algorithin were discussed and applicd to the Matsumura data. While the simulated posterior
means utilized Gibbs sampled/Metropolis-Hastings algorithm are theoretically exact, the
approximated posterior means using Laplacian methods were found to be quite accurate.
Iowever, it took hours to perform simulations but approximation was performed in seconds,
for the Matsumura example.
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APPENDIX: Matsumara’s Accounting Exams Data.

TEST
TEST
No, ! 2 i 4
No ! 2 3 4
51 25 20 18 25
I 23 21 20 27 52 22 19 10 16
2 24 21 16 27 53 23 2 21 26
3 20 21 17 24 54 25 2 20 20
4 22 16 15 19 55 17 14 13 18
5 22 18 10 17 56 22 18 13 17
6 17 15 18 17 57 22 17 ) 16
7 23 16 I&a 20} 58 20 19 15 19
8 21 16 ¥ 22 59 19 18 (5] 21
9 2 18 18 i8 60 25 19 18 24
10 25 19 1 26 61 13 9 17 20
11 23 23 I8 24 62 22 21 18 24
iz 17 14 I 14 63 21 12 15 16
13 22 20 12 13 64 25 20 19 27
14 23 16 3 13 65 22 20 21 23
15 23 20 16 22 66 23 25 21 26
16 18 17 12 25 67 24 22 19 25
17 25 22 14 26 68 18 18 12 19
18 22 22 17 l6 69 25 22 16 25
19 18 15 i8 22 70 22 18 12 8
20 21 22 I6 24 71 21 ) 14 22
2 23 19 12 20 72 23 17 11 25
22 23 18 19 20 73 23 20 19 24
23 19 20 16 24 74 12 21 14 23
24 24 20 15 20 75 23 25 21 23
25 19 16 6 18 76 20 17 16 22
26 25 20 20 23 77 23 21 15 21
27 19 14 14 20 78 19 19 15 14
28 20 19 22 26 79 20 13 18 19
29 24 18 18 25 80 21 14 11 11
30 21 17 16 24 81 20 20 14 17
i 20 17 12 19 B2 22 18 18 24
32 25 20 18 19 83 24 19 19 16
33 16 8 13 8 84 21 20 19 19
34 20 17 19 23 85 23 17 10 16
15 21 17 13 17 86 20 17 17 22
16 23 20 It 22 B7 25 25 21 29
37 19 15 16 21 B8 20 10 7 15
iR 24 22 I 24 39 18 17 El 21
39 22 16 13 23 tH) 20 19 14 19
40 23 17 13 23 91 24 24 21 24
41 16 16 10 18 92 25 3] 18 21
42 22 21 16 17 93 22 2] i6 22
43 21 15 10 18 94 24 20 t4 20
+4 20 20 11 23 95 22 18 16 20
15 23 22 13 20 96 23 14 12 16
46 22 24 14 27 97 16 12 9 8
47 19 14 9 10 98 22 17 10 18
48 22 17 18 19 90 24 21 20 24
49 22 21 17 24 100 17 17 11 22




564

APPENDIX  (Confinned)
TEST
Nao ! 2 1 4
102 23 23 16 22
103 19 12 11 13
164 25 23 18 22
103 v L1 14 14
106 21 20 18 23
17 21 IR 1R 26
10K 16 18 14 15
109 24 21 16 22
F1ik 18 17 15 20
111 20 20 15 14
12 22 21 14 23
113 17 19 9 17
114 22 17 13 22
115 22 17 17 16
116 23 22 14 26
117 15 18 16 26
114 22 [ I 17
119 24 19 16 25
{20 21 21 14 20
121 20 15 9 [
122 24 2 15 o
E13 24 20 I8 24

1S L HSU

TEST
Nes, ! 2 i f
124 24 19 16 24
125 18 14 14 18
126 24 21 15 19
127 21 21 12 23
128 22 18 17 20
129 18 16 9 23
130 20 15 17 17
131 23 23 17 18
132 20 18 15 20
133 25 21 18 17
134 21 19 13 19
135 22 12 16 20
136 25 22 21 26
137 19 11 12 16
138 2 23 I8 14
139 17 13 12 6
14} 20 16 12 24
141 22 I8 1 18
142 20 17 13 2t
143 16 17 11 15
144 25 21 20 21
145 25 23 18 24
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